IEEE Instrumentation and Measurement
Technology Conference
Anchorage, AK, USA, 21-23 May 2002

XML Technologies to Design Didactical Distributed Measurement Laboratories

Andrea Bagnasco, Marco Chirico, Anna Marina Scapolla
DIBE, University of Genoa, Italy

Abstract - Laboratory activity is an open challenge for on-line
teaching applied to scientific domains. The remote control of
instrumentation and the execution of real experiments via Internet
are topics of interest for many researchers. This paper introduces
the model of a virtual laboratory that allows practicing via Internet
in real laboratories spread on a wide area network. It is based on a
main virtual laboratory server (VLS), one or more real laboratory
servers (RLS) and client stations. Real laboratory servers control
instrumentation and drive experiments. The network links all the
distributed software components of the environment.

The paper focuses on the use of XML (Extensible Markup
Language) and its related technologies to support the development
of such environment. XML plays a central role in the definition of
the environment (instruments, experiments and users activities)
and in the maintenance process.

These technologies are very promising to address scalability
and interoperability among distributed software applications and
to facilitate information reuse ensuring data coherency,
completeness and reliability. The proposed data organization
results effective to develop, maintain and scale up the environment
and facilitates the cooperation and the contribution of many
Dpartners to the virtual laboratory project.

1. INTRODUCTION

Multimedia and network interactivity are leading to new
forms of teaching and learning and new roles for students
who act as participants and not only spectators of their own
learning process.

In scientific domains, an open challenge for on-line
teaching is related to laboratory activity. Specific
environments have been developed to construct virtual
laboratories and to make them available though the network.
Virtual laboratories can be based on simulations or
alternatively, the network can provide a virtual access to
personal computers that control real instrumentation and
physical devices. This paper presents the results of our
research in this field. It introduces the model of a virtual
laboratory that allows testing theories through practice and
executing real experiments that can be distributed in different
laboratories, spread on a wide area network, and controlled
by local computers.

Remote control of real instrumentation and laboratory
experiments is realized by means of a distributed sofiware
system that results complex and requires a modular design to
guarantee the possibility of extending the environment to a

0-7803-7218-2/02/$10.00 ©2002 IEEE

wide range of equipment and of applying it to many different
educational domains.

Section II introduces the virtual laboratory environment,
section III focuses on the system scalability and maintenance
issues and explains how XML (Extensible Markup
Language) and its related technologies can effectively
support the development of such environment.

II. THE VIRTUAL LABORATORY: AN OVERVIEW

Our research, carried out during the last two years [1], led
to the definition of a model to share laboratories in Internet
(Internet Shared Instrumentation Laboratory - ISILAB).
ISILAB is based on a distributed software environment (see
Fig.1) consisting of a main virtual laboratory server (VLS),
one or more real laboratory servers (RLS) and user/client
stations. Internet links all these components.

Figure 1 - ISILAB Architecture

Real laboratory servers can be spread on wide geographic
area and control real experiments. No limit exists to the
location of the laboratories and the only requirement is an
Internet connection between client and servers controlling
instrumentation. Users do not require any particular hardware
and software equipment and can carry out experiments
through the network. They do practice transparently to the

652

real location of the device under test in a multi-user
concurrent way.

The environment offers the chance to make experiments in
supervised or in concurrent mode. System administrators,
who are in charge to maintain the database of experiments,
set the execution mode of each experiment. In supervised
mode there is a privileged user who is the only one able to
modify interactively the operational conditions, acting on the
instrumentation controls, and the other users are only able to
see the response of the system on their computer screens.
This mode can be very effective in a context of distance
education as teachers can show real laboratory experiments
via Internet.

When an experiment is carried out in concurrent mode all
users are able to interact with instruments and see the results
of their own commands. The coberency of each experimental
session is guaranteed by the RLS.

A prototype of the virtual laboratory has been developed
with the main goal of validating design and implementation
choices and setting up a framework to evaluate performance
and didactical usefulness of the proposed approach.
Students, remotely accessing the laboratory, are introduced
to a set of experiments/lessons leading to gain knowledge of
electronic instruments, measurement procedures and circuits
under test. Each experiment is presented as a lecture with a
didactical target and the proposal of a collection of exercises
to be conducted via web. A set of hints, tips and instrument
handbooks are available on-line and provide a continuous
support to conduct experiments. Figure 2 is a snapshot of the
prototype. It is possible to have both simplified and very
realistic virtual panels, in order to hit different didactical
target.

Figure 2 - The learning environment.

L1 The VLS

The VLS is a network node hosting a web server (in the
prototype it is a G web server from National Instruments) that

introduces users into the virtual laboratory, implements the
access control policy, and logs users activities.

The access is controlled on the basis of login/password
credentials and only authorized users can get into the
laboratory.

The VLS presents the list of available experiments to users
and gives information about each experiment, such as a brief
description, the number of active users and the location of the
experimental set up. The knowledge of the real location of an
experimental set-up is not required but it can be useful for
establishing connections with the laboratory technicians.
When a user asks for an experiment, the VLS verifies the
availability of the required experiment; then it initialises the
communication between the user and the RLS that controls
the selected experiment. After that, the instruments’
interfaces (Java Applets) are delivered to the user. This
interaction is summarized in figure 3.

Figure 3 — Interactions between the user and the system.

12. The RLS

Real laboratory servers manage the interactions between
users and experimental set-up. Each RLS receives the inputs
from users via TCP, applies them to the instruments, which
are connected via local bus (i.e., [EEE488), retrieves the
results and sends them back to users. RLSs run a specific
server-application (written in LabVIEW from National
Instruments) that takes care of separating the different user
data spaces (Contexts). The Context is the data structure that
caches information about the current configuration of each
instrument involved in a specific experiment, carried out by a
specific user. When a user sends a command (by acting on
the virtual instrument panel), his/her Context is updated and
applied to the appropriate instrumentation set. Instruments’
responses are recorded in the Context and changes are sent
back to the user. A Context identifier is assigned to each user
when an experiment is selected; this assures the coherency
among context data, virtual instrumentation and user
identification during the experiment execution. In order to
communicate with the RLS, Applets must send an identifier

that contains both the Context and the specific instrument
IDs.

The Context data structure has been designed having in
mind that the status of a virtual instrument can be represented
by a set of heterogeneous parameters: the Components. A
cluster of three parameters (identifier, type, value)
characterizes each Component. In this way, the Context of an
experiment consists of a bi-dimensional array: the set of
components that are necessary to describe the status of the
instruments involved in the experiment. A collection of
Contexts (a three-dimensional array) represents the data area
of the whole environment.

This model lets to control concurrency and facilitates the
development of different GUIs and driver adapters for the
same instrument driver. We can insert or remove instrument
drivers without changing the RLS core software, but simply,
copying files in a specific directory.

Figure 4 shows how instruments are managed by the RLS.

GUI1 GUIi GUIN
RLS Engine
Driver Driver Driver
Adapter 1 | Adapteri Adapter N
Instrument Driver
Interface Driver Instrument
Simulation
! Real i
i Instrumenty(s) i

Figure 4 - Instruments Management.

Driver Adapters convert the user controls (knobs, switches
and so on) to Instrument Driver inputs/outputs. They are
software modules that manage the communication between
the GUI and the instrument driver. The status of the
instrument, set by the user, is elaborated and translated to a
specific call to the instrument driver.

Instrument drivers are general-purpose drivers that are
usually provided by vendors. They transform numeric values
into instruments’ specific commands. Instrument drivers
should be able to exchange data with both real and simulated
instrumentation. There are categories of Instrument Drivers,
called IVI drivers, which have this characteristic in native
way. [2]

1.3. User Interfaces

The laboratory experiences can be carried out via the most
popular web browsers. HTML pages, simple and portable

carrier of information, are wused for introducing and
explaining experiments. Java Applets are the natural choice
for GUIs, because of the flexibility in design, facilities in
network programming and platform independence [3]. In the
prototype, Applets has been developed following two
different approaches. We have used both a common JDK
environment and a commercial tool, AppletVIEW™ from
Nacimiento™ [4], which is specific to the development of
instrument control panels. The communication between RLS
and Applet GUIs uses a TCP-based protocol from
Nacimiento™, the Virtual Instrument Transfer Protocol
(VITP).

ITI. SCALABILITY, REUSABILITY AND MAINTENANCE ISSUES

The virtual laboratory must be regularly updated in order
to meet students and teacher needs: new experiments are
added and new instruments controlled. The success and the
effectiveness of the environment are strongly conditioned by
the way we can add new components and reuse existing
instrumentation to deliver new experiments.

To achieve these goals our model provides a modular and
scaling structure, so that different developers can contribute
to increase the number of experiments. The insertion of a new
experiment implies to build a certain number of objects, such
as web pages for the experiment explanation, applet GUISs,
instrument driver adapters and so on. A large set of
heterogeneous components are involved in the system
maintenance/upgrade. For instance, an experiment has to be
described in terms of identifier, title, description, author, RLS
location, didactical target, activities, instruments and so on.
Each experiment can be associated to a set of exercises and
each exercise is composed of a list of tasks, hints and
expected results. Again, each instrument has a default
configuration that is specific to a particular hardware device.
The same real instrument can be managed by multiple
software user interfaces that are characterized by a different
set of functionalities.

It is clear that some degree of automation is mandatory for
the upgrading process; we need to reduce maintenance effort
and to guarantee coherency.

14. The XML Solution

We propose the use of XML to describe the environment
data concerning instruments, experiments and users activities.

XML and related technologies are very promising to
pursue scalability and reusability, as they provide
interoperability among distributed software applications and
facilitate information reuse ensuring data coherency,
completeness and reliability. XML allows to represent data in
a self-explanatory, data-centric way. Each element of a XML
file is embedded into a tagged structure. This feature

“ZEN

654

guarantees the portability of data through different
hardware/software platforms, that means portability through
space and time [5]. Beyond XML, "the XML family" is a
growing set of modules that offer useful services to
accomplish important and frequently demanded tasks like a
standard way to add hyperlinks to an XML file (X/ink) and
syntax constructions (XPointer and Xfragments) needed to
navigate inside it. An Xpointer, for instance, is a bit like a
URL (Unified Resource Locator), but instead of pointing to
documents on the Web, it points to pieces of data inside an
XML file. Moreover, language features like XSL (Extensible
Stylesheet Language), DOM (Document Object Model) and
Schema exploit the power in terms of flexibility and
expressiveness of XML. XSL is the advanced language for
expressing style sheets. It is based on XSL7, a transformation
language used for rearranging, adding and deleting tags and
attributes. The DOM is a standard set of function calls for
manipulating XML (and HTML) files from a programming
language. XML Schema lets developers to precisely define the
structures of their own XML-based formats [6]. The
existence of these standards avoids the user to bind to a
particular vendor. The large diffusion of XML has made
available a lot of powerful COTS (commercially-off-the-
shelves) parsers for every kind of programming language
(C++, Java, Visual Basic, LabVIEW, TCL, and so on). The
most of these are available for free and they are also very
reliable, because they have been tested and validated in very
extensive way by a large community of developers.

Dialects of XML, applied to describe and control
instrumentation are under development [7] or already
submitted to the community [8], as in the case of Virtual
Instruments Markup Language (VIML) [9]. VIML was
introduced to describe the user’s interface of virtual
instruments. A specific XML Schema defines rules and
names to describe commands and data that are transferred to
and from instruments.

I5. XML and ISILAB

The Internet shared laboratory makes a well-built usage of
VIML and defines an appropriate XML Schema for the
description of the whole information required by the system.

Figure 5 is a graphical representation of the system data
model.

Experiments are the focus of the system. Each experiment
is defined through many elements, such as the author, the
location (name of the RLS), procedural tasks and so on. A
certain number of exercises or activities can be associated to
an experiment. For example, we can think to a set of tests that
students are invited to execute in order to practice. Each
exercise has a textual description and one or more pictures
associated to it. The experiment execution requires the
control, and thus the configuration, of a certain number of
instruments. The configuration of each instrument is

described using XML according to the model introduced in
section I1.2.

Figure 5: The System Data Model

In this way, each system component (instrument,
experiment, exercise, and so on) has a proper XML definition
that can be managed using a commercially-off-the-shelf
parser. For the development of the prototype, we have chosen
to use the MSXML [10] parser that can be easily called by a
LabVIEW™ application. On the VLS side, the parser
dynamically generates web pages containing the list of the
available experiments, tasks and exercises. The RLS
configures itself extracting data from the XML structure:
addresses of real instruments, instrument drivers and Driver
Adapters locations, components values and so on. The XML
structure acts as both a database and a configuration file. It is
easily readable and manageable. The portability of XML lets
us imagine a network of virtual laboratories where contents,
both hardware and software, are provided from a community
of distributed institutions. In this scenario, teachers can easily
set-up experiments using a network of laboratories.

In order to test the ISILAB system, a set of experiments
on digital electronics has been set up. The main didactical
target of these experiments is to test basic digital circuits.
Once the test bench has been prepared and instruments
connected to the RLS via GPIB, we need to adapt the
software environment and to give visibility to the
experiments. This task is extremely facilitated by the data
model described in the previous section. We don’t need to
create specific HTML files. GUIs and drivers of the
instruments can be reused if they already exist.

To add a new experiment it requires filling new elements
of the XML structure. Commercial tools like XML Spy™

[11] are helpful in accomplishing this task. Figure 6 reports a
view of the XML document..

g oo S e

il 90 R L8 PR SENITIoE K 33 1S £ £k (RSB

T e v s e
g AT Ry

Haoo 4 aso® (8 S WOlTR |
LRTAS o S RU RN H
Tepmacr it e, 130 £ K au YL

Figure 6: A view of the XML document

Using this kind of editor, the insertion of new data into the
XML document is very simple. If compared with the manual
creation of HTML pages, this approach is absolutely time
effective and lets to maintain a stylistic coherency by
separating data from presentation. The same approach is
used to introduce automation in building the software that
drives instruments. Java Applets are automatically generated
starting from an XML description of the instruments’ GUIs.
The development of the driver adapters is simplified by the
use of a unique model that is valid for all the instruments.
The use of a template speed up the rate of production.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an Internet shared
laboratory that allows executing real laboratory experiments,
controlled by computers and spread on a wide area network.

The focus is on the model and the methodologies used to
describe the virtual laboratory and to structure system data.

Data organization results effective to develop, maintain
and scale up the environment and facilitates the cooperation
and the contribution of many partners.

The laboratory components are easily reusable.
Instruments can be operated with different levels of
complexity and functionalities according to different
requirements. The commands and the data exchange protocol
are unaltered and reusable; different user interfaces can be
defined by means of simple specifications.

XML technologies play a central role in the definition of
the environment and in the maintenance process. They
guarantee portability and interoperability.

The experiment description will be the subject of further
investigation in order to integrate those elements that can
transform each single experiment into a pedagogical unit to
be shared and reused for different educational targets. We

look at experiments as learning objects that must match the
users’ learning goals.

Classification of experiments, according to a standard
classification scheme, such as the IEEE-Learning Object
Metadata, will provide an open and flexible way for
management and reuse.

Acknowledgement
The authors would like to thank Corrado Franchi for his

precious contribution in the prototype development.

V. REFERENCES

[1] A. Bagnasco, M. Chirico, G. Parodi, A. Sappia, AM. Scapolla, “A

Virtual Laboratory for Remote Electronic Engineering Education”, in
International Perspective on Tele-education and Tele-leamning, Ashgate
Book, 2000, pp. 1-14.

[2] www.ivifoundation.org

[3] Chung Ko, Chi et Al, “A Web-Based Virtual Laboratory on a Frequency
Modulation Experiment”, IEEE Transactions on Systems, Man, and
Cybermetics, Vol. 31, No. 3, August 2001.

[4] Travis, Jeffrey, “Internet Application in LabVIEW”, Prentice Hall, 2000
[5] Goldfarb, Charles F., and Prescod, Paul, “The XML Handbook”, Prentice
Hall PTR 2001.

[6] www.w3c.org

[7] Instrument Markup Language, http://pioneer.gsfc.nasa.gov/public/iml/

[8] http://'www.w3.org/XML/

[9] http://www.nacimiento.com/viml

[10] www.microsoft.com

[11] www.xmlspy.com

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

