
Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-1

The Intelligent Universal Virtual
Laboratory (UVL)

Michael Duarte

Sr. Software Engineer, Temple University, Intelligent Systems Application Center, Electrical & Computer Eng. Department
Philadelphia, PA 19122 USA

Annapoorna Mahalingam1, and Brian P. Butz2

1
Abstract - The objective of this project was to create a
realistic, real-time, electrical engineering virtual
laboratory. This project targets individuals who do not
have adequate mobility of their upper bodies to perform
laboratory experiments. To provide a more realistic and
enhanced learning experience, the users of the virtual
laboratory are allowed the freedom to build and test a
wide variety of realistic electrical circuits, and be able to
perform curriculum-based experiments. The main goal is
to create an environment similar to a real electrical
engineering laboratory, and to offer the user a way to
learn the different aspects of instrumentation and
circuitry.

Index Terms - Circuit Comparer, Intelligent Tutor, Interactive
Software, Virtual Laboratory

INTRODUCTION

According to the Center for Disease Control [1], there are 13.6
million individuals who have limited hand use and another
16.3 million who have mobility limitations. In the field of
science and engineering, there are approximately 109,700
persons with motor disabilities employed in the United States
[2]. Also, approximately 31,300 students with motor
disabilities were registered in science and engineering
programs in 1995 [3]. This project is intended to encourage
and assist individuals with such mobility disabilities to enter
the field of electrical and computer engineering. Presently,
disabled individuals with motor disabilities have a difficult
time with the laboratory portion of the curriculum. At most,
individuals with limited or no use of their arms and hands
could only watch their lab partners perform the laboratory
experiments. While better than nothing, this is not good
enough for a quality laboratory experience.

The purpose of the Universal Virtual Laboratory (UVL) is
to provide a disabled student with motor disabilities a realistic
laboratory experience that can be done at the student’s pace
while providing a good, solid, curriculum-based background

1 Annapoorna Mahalingam, Temple University, Intelligent Systems
Application Center, Electrical & Computer Eng. Department
2 Brian P. Butz, Professor, Temple University, Electrical & Computer Eng.
Department

in circuit experimentation, as well as a virtual lab assistant to
guide and assist the student.

Recent advancements in computer technology and
availability have allowed the computer industry to develop
hardware and software applications that address the needs of
the physically disabled. Circuit simulation software has
existed for some time, with the very first simulators being
DOS text based programs such as PSpice. With the
introduction of operating systems with graphical user
interfaces (GUI), better laboratory simulation software
became available, such as Electronics Workbench. However,
these programs contain an interface that is difficult for the
physically disabled to use, such as small buttons and an
unfriendly breadboard. In addition, because the instruments
and components do not look realistic, it can feel like a
simulation, instead of a laboratory.

IMPLEMENTATION

This section describes the factors considered in the
development of the UVL. The User Interface section
describes the user interface and why it is designed the way it
is. A detailed explanation of the various programs used to
develop the UVL is discussed in section II, The Design
Process. Section III, the System Architecture, gives an overall
view of the components that result in the present UVL. The
mechanism facilitating communication among the UVL’s
application programs is described in section IV. Finally,
sections V and VI give an overview of the intelligent
laboratory assistant.

I. I. User Interface

The main goal in the design of the user-interface is to present
the user with a realistic environment as well as an
environment that a disabled user can manipulate without
difficulty. To do this, the laboratory was designed to allow
many different types of assistive technology to work with the
environment. Assistive technology allows disabled
individuals the ability to manipulate a computer. Some of the
devices that were focused on are: switches, large keyboards,
and voice recognition. The UVL has also been developed to
accept traditional mouse and keyboard manipulation. To
make the user interface friendly to the above mentioned

Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-2

devices, a particular scheme of design was followed so that
simple commands would perform major laboratory functions.

The user-interface consists of a breadboard with miniature
instruments, with a variety of electrical components (see Fig.
1). The components available are: resistors, capacitors,
inductors, diodes, zener diodes, potentiometers, variable
capacitors, transistors, and jumper wires. At the workstation,
the user has the freedom to build any type of circuit
configuration possible. Typically, the student is given an
experiment to complete, which includes circuit schematics to
build and test circuit theory. The instruments available to the
user are two DC power-supplies, a function generator,
oscilloscope, spectrum analyzer, and a digital multimeter.

FIGURE 1
USER WORKSPACE / INTERFACE

The instruments are connected to the holes on the

breadboard when the user selects the instrument of his/her
choice and enters the coordinate of the hole the user wishes to
place a cable. The components connect to the breadboard in a
similar way. The coordinates are the letters and numbers seen
on the breadboard (see Fig. 2). The user enters the letter and
number corresponding to the hole on the breadboard where
he/she wishes to place a wire, cable or component. An
example of the interaction with the voice recongnition device,
might be: “Move mouse right”, “Click”, “C, 2, 2000”. This
would move the cursor to the right, over a particular
component, and place it on coordinate “C 2” with a value of
2000 ohms for a resistor.

This design scheme, to connect instruments and
components to the breadboard, was determined to be the most
effective way a disabled person with an assistive technology
device could easily control the interface. For a traditional
mouse and keyboard setup, the interface allows a user to
simply drag a component or wire onto a particular node on the
breadboard.

FIGURE 2
COORDINATE VIEW OF THE USER WORKSPACE

Each instrument in the workstation has a corresponding

larger version that is used to change the parameters of that
instrument. With the two input instruments (DC power-
supply and function generator), the user can change the
settings and control the type of signal being put through the
circuit. The output instruments (multimeter and oscilloscope)
can be used to measure the voltage and current of particular
parts of the circuit. The user can manipulate the settings on
these instruments to view the signal similar to actual
instruments. Fig. 3 shows the larger version of the function
generator and the oscilloscope respectively.

The specific instruments that were modeled are fully
adjustable to a range of values found on the equipment in an
ordinary electrical engineering laboratory. As can be seen
from Fig. 3, the buttons, knobs and displays have a large area.
This was done so that the disabled user could more adequately
manipulate the instruments. If the user is inclined to use the
cursor with the voice recognition software, he or she can more
readily navigate the cursor over the large buttons and displays.

FIGURE 3
FUNCTION GENERATOR AND OSCILLOSCOPE

II. The Design Process

In the process of designing the UVL, the major issue
encountered was: what software applications can be used that
will make the system run and perform like a real laboratory.
The laboratory had to give the user a way to produce a virtual
layout of a circuit configuration. Once this layout was
completed, it had to be analyzed to extract certain information
about the circuit. Finally, this information had to be displayed
on instruments that looked and functioned like real
instruments found in a real laboratory.

Macromedia’s Authorware was chosen to give the user a
way to layout a circuit or build a circuit on a breadboard.

Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-3

Authorware is an interactive multimedia development package
that has been used as an authoring tool for computer-based
training, because it makes it easy to handle a wide variety of
media and precisely track and respond to users’ actions. It can
display images and text, as well as track and store user
movements, and has the ability to communicate with other
packages. Since users of the UVL needed the ability to move
components, and create a circuit that seemed real, a package
that could make interaction simple, and at the same time
record the interactions was an important aspect for this
project.

Authorware is designed so that a developer can easily add
graphics and mobility to a screen. Also, innate to Authorware
is the user tracking mechanism. This mechanism is the most
important key to the UVL, because of the need to “know”
what the user is moving, connecting, or changing on the
screen.

If a user builds a circuit, Authorware can record the
interactions and with a programmed algorithm, develop a
description of the circuit. For example, if an image of a
resistor is on the screen, the user could move the resistor to a
particular part of another image, say the breadboard. Once the
user has moved the image of the resistor to his/her desired
spot, Authorware can store a numeric location of this image.
This numeric location can then be used later to perform an
analysis of the circuit.

Although Authorware can be programmed to do many
different calculations and even execute C-based code, it
cannot easily analyze a circuit. This brought up the issue of
how could a circuit built or laid out in Authorware be
analyzed to extract the appropriate information the user needs
to see. PSpice, which is a circuit analysis tool, was an obvious
choice in this case.

PSpice is a popular circuit analysis program used by
many electrical engineers as a tool to analyze and test circuitry
[5]. To use PSpice to analyze a circuit, one has to generate a
text version of the circuit in a text file. This “text circuit” is
called a “netlist,” which is essentially a component-by-
component “text” diagram of the circuit written in a specific
format for PSpice. Knowing that PSpice needs this netlist file,
Authorware had to generate a text file with the netlist of the
circuit built by the user. Using Authorware’s ability to track
movements of images by the users, a translation of where the
user puts an image of a component to a node location was
plausible. Therefore, with PSpice’s ability to analyze the
circuit and store the analyzed data in another text file, there
had to be a way to display this information.

National Instruments’ LabView is a well-known package
that is used in industry for instrumentation analysis [4]. This
program seemed ideal, because of its ability to be customized
through its native G-code (graphical code) language. Within
LabView are dials, buttons, switches and the ability to process
mathematical data easily. Knowing that LabView could look
and perform like real instruments, it seemed like even more of
an ideal choice for the virtual laboratory. These instruments
created in LabView needed the ability to process information
coming out of the PSpice output file. LabView can easily send

information to other programs and analyze data from actual
real instruments or from other programs. Essentially, the
output from PSpice would be used as a data stream
continuously sent to LabView. This stream would then have
to be parsed for the appropriate information using a search
algorithm.

III. The System Architecture

Fig. 4 shows the system architecture of the UVL. For
simplification purposes, this architecture uses the voice
recognition device as the interface to the laboratory. The user,
via the voice interface Dragon Dictate, interacts with a
packaged Authorware executable, which contains the user
interface. Dragon Dictate is an off the shelf software package
that allows users to manipulate the Windows environment, via
voice recognition. The user also controls the instruments that
are packaged as separate executables, which were created in
LabView. The user cannot change or manipulate the code
developed in Authorware or LabView. Instead, these
packaged versions only run in the Windows environment, and
allow the user to control only what is displayed to them.
PSpice, which is used to calculate all the necessary
information of the circuit the user builds runs autonomously
and hidden from the user. At no point does the user interact
with PSpice in any way.

The Intelligent laboratory tutor is a C++ natural language
interface, developed specifically for this project. It accepts
questions or a comment posed by the user and determines
what information the user is requesting. The Intelligent tutor
can also determine if a circuit the user has built on the
breadboard is the same as the circuit they are required to build
(this will be discussed further in the section VI). This C++
executable runs hidden from the user and seems, to the user,
as a natural part of the user workspace.

FIGURE 4
UVL SYSTEM ARCHITECTURE

IV. The Communications Channel

The architecture discussed above needed to work quickly and
efficiently, without the user seeing what is happening in order
for the UVL to seem like it is functioning in real-time.
Through extensive testing of Authorware, LabView, and
PSpice’s input and output capabilities, it was concluded that

Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-4

using text files is a fast, efficient, and reliable method to create
a constant communications channel (see Fig. 5).

This communications channel allows the virtual
instruments to update in real-time (although slower than in a
real laboratory). The input instruments (function generator,
DC power supply, and sweep generator) send Authorware the
settings the user has set, through a text file. Authorware then
takes these settings along with the netlist it has created from
the virtual breadboard and sends it to PSpice. PSpice then
creates an output file with all the mathematical information of
the circuit and sends it to the output instruments (oscilloscope,
multimeter, and spectrum analyzer) for display. The creation
and exchanging of files, as well as the PSpice calculation, is
completely hidden from the user (see Fig. 5). It runs in a
hidden DOS window within the Windows operating system.

FIGURE 5
THE UVL COMMUNICATIONS CHANNEL

V. The Intelligent Tutor/Laboratory Assistant

The Intelligent tutor found in UVL consists of two parts; a
natural language parser and an intelligent circuit comparer,
that we call the circuit recognizer. The circuit recognizer will
be discussed in detail in the next section. The natural
language parser portion of the tutor is used to answer
questions that the user might pose during a laboratory session.
When the user of the laboratory wishes to post a question or
comment to the intelligent tutor, he/she calls the tutor by
clicking the tutor icon. Once the tutor is activated, the user
can either type or dictate their question or comment. This
question is stored to another text file and the C++ executable
containing the natural language parser loads this file and
makes the necessary assessment of what the user wants to
know. An example could be: “How do I measure the voltage
across the resistor?”

With this information, the tutor parses the sentence and
identifies the key words in order to make an assessment of
what the user wants to know. The key words above are:
“How”, “measure”, “voltage”, and “resistor”. These words
are used to search the tutor’s knowledge base and make a
decision on what the user should see; which could be a simple
tutorial on how to connect the digital multimeter across a
resistor to measure its voltage. For more information on how
the natural language parser performs the above operation,
please refer to [6].

VI. The Intelligent Tutor/Laboratory Assistant – The Circuit
Recognizer

Part of bringing the user a natural and helpful learning
environment involves providing a facility that can evaluate
their work, identify mistakes and provide appropriate advice
and suggestions. The circuit recognizer is an intelligent circuit
analysis module incorporated in UVL to examine and analyze
the student’s work, identify errors and provide explanations
and suggestions to guide the user to the right answers.

As part of the lab, UVL provides the user with a set of
experiments along with instructions on how to build and
simulate circuits provided in each experiment. The user is
given the freedom to build the circuit in any way that he/she
wants, adhering however to the “essence” of the template.
Therefore, when a student builds a circuit on the breadboard,
the circuit may be connected in a manner physically different
from the connections shown in the circuit schematic; and yet
the circuits might be equivalent. In a real laboratory setting, if
a student had a problem with an experiment/circuit he or she
would approach the laboratory-teaching assistant (TA).
Ordinarily, the TA would examine the student’s circuit
keeping in mind the objective of the experiment. The TA
would check to see if the student’s circuit has all the
components that are required. Next the TA would examine if
the required components are properly connected as illustrated
in the experimental schematic. Based on observations, a
conclusion would then be made about the causes and nature of
the problem. The CR provides this functionality in UVL.

The CR has knowledge of circuit theory concepts, and is
capable of using this knowledge to assess student work. The
objective of the CR is to verify if the circuit that is created by
the student is a valid representation of the laboratory’s circuit
schematic found in the experiments. If a student wishes to
confirm that the circuit created on the breadboard is indeed
equivalent to the schematic in the experiment, they have the
option to call the CR by hitting the “check my circuit” button
provided near the breadboard. The CR compares the student’s
circuit with the appropriate laboratory schematic. The result of
the analysis is recorded in a text file, to be displayed to the
user through Authorware.

ARCHITECTURE AND IMPLEMENTATION OF CR

The main objective of the CR is to function as a circuit
configuration comparator and determine if the student created
circuit on the breadboard is equivalent to the experimental
schematic. The CR determines circuit equivalence based on
the rule that, "If the components in the student’s circuit are the
same in value and type as the laboratory schematic, AND the
manner in which they are connected is the same; then it can be
said that the two circuits are component-wise and
topologically equivalent. If any two given circuits are
component-wise similar and topologically similar, then the
two circuits are considered to be equivalent.” The following

Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-5

sections will describe the various modules in the CR and their
role in the determination of circuit equivalence.

I. Inputs and Preprocessing

UVL uses a computer-aided circuit analysis program, Pspice,
to simulate circuits created in the lab. Pspice analyzes the
circuit, and generates a file referred to as the output netlist.
The netlist contains information about each component (type
and values), connecting wires and measuring devices used in
the circuit along with the nodes across which they are
connected. Each time the user clicks on the “calculate” button
after hooking up a circuit, Pspice is activated in the
background and generates an output netlist of the circuit on
the breadboard. This circuit output netlist is the input to the
CR. In order to analyze the equivalence of two circuits, the
CR requires the Pspice generated netlist of both circuits under
consideration.

Before the CR proceeds to analyze the components and
topologies of the circuits, there is some preprocessing that
needs to be done. The circuit is condensed by removing wires
and measuring devices, which are not considered to be part of
the main circuit but serve only as adjunct or additional
components. The CR begins by separating the components
and connecting wires in each circuit in different files (wire file
and component file). Routines are written which traverse the
wire file and remove each of these wires. The removal routine
effectively equates the two nodes across which the wire is
connected, thereby reducing the wire to a single node/point. If
a wire is connected in parallel across a component, the
component is removed from the circuit as it amounts to a short
circuit. A log of the components that are eliminated and the
wires that shorted them out is maintained. If the elimination of
wires resulted in a hanging node, then the circuit is identified
to be open. The nodes that are hanging are noted down. In
case of an open circuit or short circuit, the CR stops analyzing
the circuit and communicates the error to the user. Once the
circuit is stripped of all the wires, the measuring devices are
removed. If a device is used in parallel across a component the
device is merely removed from the circuit. If the device is
used in series with a component, the device is removed and
the nodes across which the device is connected is effectively
equated. Separate modules determine if a measuring device is
connected in series or parallel with a component. After
preprocessing is done, the nodes of the circuit are identified
and placed in an array. The CR then proceeds to analyze the
circuit in the following two steps.

II. Component Check Module

The component check module verifies if all the components
required by the experimental schematic is present in the circuit
created by the student. From the component files (refer I) of
the student and template circuits, components of a particular
type (Resistor, Capacitor, etc) are picked out and placed in
separate arrays. The tag with which it is represented in the
Pspice netlist identifies each component. Each array (Resistor

array, Capacitor array, inductor array) is then sorted in
ascending order using selection-sorting algorithm [7]. Once
this is done for all the components, the corresponding arrays
of the two circuits are compared for order and individual
values. If any disparity is detected, the missing or additional
component is noted in the result file to be communicated to
the student when the analysis is complete.

III. Topology Check Module

The second phase involved in determining equivalence, is to
see if the two circuits are topologically similar. We begin by
devising a topological model of a circuit that uniquely
represents the topology of an electrical circuit. After much
research and help from graph theory and state variable
approaches to circuit solutions, the topological representation
that was chosen for the CR is the Proper tree representation of
a circuit. This section deals with the rationale behind this
decision and the details of topological evaluation in UVL.
 We begin our topological analysis by viewing an
electrical circuit as a Graph [8]. An electrical network
consisting of Nb branches and Nn nodes can be represented by
a node branch matrix of order (Nn-1) * Nb called the Basic
Incidence Matrix (BIM). This matrix represents the node-
component incidence pattern of an electric circuit network.
The BIM will be used as the base to create the topological
model.

Our interest is now directed towards a certain tree of an
electric circuit graph, which we believe is the topological
essence of the entire network. A network tree is a sub graph
connecting all the network nodes but having no closed paths.
This sub graph called the proper tree is defined as a tree of an
electrical circuit network that contains (i) All the voltage
sources as tree branches, (ii) all the current sources as
links (iii) as many capacitors as tree branches as possible (iv)
as many inductors as links as possible [10]. A link is an
element when added to a network forms a closed path. Our
contention is that two electrical circuit networks that have the
same proper tree/trees have similar topologies. This is verified
using the state variable approach to circuit analysis, which is a
popular method to compute the solution of a circuit.

According to the state variable approach [9], the solution
of a linear time invariant system can be obtained by
computing the values of its independent system parameters.
Once the independent state variables are computed the
dependant can be determined from them and the circuit
solution can be obtained. In a similar way the topology of a
network can be obtained, if the position independent
topological variables are known. That is if the position of
certain key components in the network is known, the position
of the rest can be obtained from them.
 For the computer aided generation of state variables, a
tree of a particular configuration is picked out so that it
ensures that as many independent variables as possible are
computed. The order for this tree is voltage sources, capacitor
voltage, as few inductors as possible and the required
resistors. Link currents and branch voltages are of prime

Session T4G

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

T4G-6

interest. This tree configuration also represents an independent
topological model from which the entire network can be
generated, as the position of all other elements in the network
is dependant on the above tree.
 Having established that the proper tree/trees of a network
accurately represent an electrical network topology, it is now
implemented in UVL. The topology check module examines a
circuit and picks out its proper trees. Once this is done for
both circuits at hand, their proper trees are compared. If the
independent tree/trees (from which the entire network
topology can be extracted) for two networks is the same, the
topology check module decides that the networks have
equivalent topologies. The proper tree(s) of an electric circuit
network is picked by performing matrix manipulations on the
BIM using a specific algorithm [10]. Once it is established the
circuits are equivalent, the user is told that the circuit is
hooked-up correctly and told to evaluate their methodology.
If the circuit is not equivalent, the user is told what is wrong
with their circuit and is told to correct it.

CONCLUSION

The Universal Virtual Laboratory has so far been accurate,
reliable, and easy to use. It gives the user enough freedom to
create a feeling of a real laboratory environment.
Consequently, this program has the potential to be beneficial
and educational for a disabled student who is in the electrical
engineering field. In addition, the UVL could be widely
distributed and used in a wide variety of other educational
environments. It could reduce the cost of equipment and
perhaps even reduce the time spent in a structured laboratory
curriculum.

On-going testing and modifications are being performed
on the intelligent tutor part of the virtual laboratory. Although
preliminary tests have shown that the intelligent tutor is
functioning adequately, future work will be required to make
it as close to accurate as a real laboratory assistant.

All the assistive technology devices discussed in this
paper have been thoroughly testing by an assistive technology
specialist, and have been proven to work effectively with the
virtual laboratory. Development of algorithms to assist in the
use of eye detectors and headset pointers is anticipated.

It is recommended that the UVL be used on a computer
equal too or faster than a 750 MHz computer with at least 32
Mbytes of RAM. One aspect that takes a considerable amount
of processor time is displaying the iterative calculations from
the PSpice output file on the oscilloscope or spectrum
analyzer. Using Labview’s graphical programming language,
the data is “stripped” from the PSpice output text files and
then loaded into arrays within LabView. Code optimization
within the LabView instruments could help the performance of
the laboratory and is currently being investigated.

Full fledge testing of the virtual laboratory is anticipated
to begin in the fall of 2005. Testing will consist of having
students within the Department of Computer and Electrical
Engineering at Temple University sit down with the UVL and
perform experiments from the department’s curriculum. This

testing encompasses both the usability of the software, the
accuracy of the intelligent tutor’s understanding of the
questions posed, and the accuracy of the circuit recognizer.

The UVL can run off of a CD-ROM, or over the Internet.
Testing of the UVL online has shown no considerable loss of
efficiency or any other problems. For more information,
please visit http://www.temple.edu/IMITS.

ACKNOWLEDGMENT

Partial support for this work was provided by the National
Science Foundation’s Division of Undergraduate Education
through grant DUE #9952291 and Human Resource
Development through grant HRD-0004292.

REFERENCES

[1] Center for Disease Control (1995). National Health Interview Survey,
1994.

[2] National Science Foundation (1997). Award Abstract #9710548, SBIR
Phase II: Computer Simulation of Science and Technical Laboratory
Exercises for Physically-Disabled Students,
Http://www.fastlane.nsf.gov/servlet/showaward?award=9710548.

[3] National Center for Education Statistics (1996). The 1996 National
Postsecondary Student Aid Study data system, 1996.

[4] Wells, Lisa, and Jeffrey Travis. LabView: for Everyone. Upper Saddle
River: Prentice, 1997. 6.

[5] Monssen, Franz. MicroSim Pspice with Circuit Analysis. Upper Saddle
River: Prentice Hall, 1996. 1-2.

[6] Krishnasamy, Kaushik. “Intelligent Natural Language Interface”,
Proceedings of the Seventeenth International Florida AI Research
Society Conference, Miami Beach, FL, 2004.

[7] Press William, Flannery Brian, Teukolsky Saul, Vetterling T. William,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press; 2 edition, October 30, 1992.

[8] Vago Istvan, Graph Theory: Applications to the calculation of Electrical
Networks. Elsevier: New York, N.Y., 1985.

[9] Brian Butz, “Computer-Aided Circuit Analysis using State variable
techniques”, Masters thesis, Drexel University, 1968.

[10] Chua, Leon & Lin, Pen-Min, Computer-Aided Circuit Analysis of
Electric Circuits: Algorithms and Computational Techniques. Prentice
Hall 1975

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

