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Abstract— This paper presents different techniques for the
remote control of mechatronic systems over communication
networks. The first part is devoted to a virtual laboratory for ed-
ucational purposes. This system can be activated at distance, but
the control loop itself runs locally. The second part of the paper
describes a new approach for the control of dynamical systems
with a stochastically varying delay in the input, caused by the
signal transmission over the network. The delay is described by
a probability distribution model, and some simple control laws
are proposed. Furthermore, the properties (asymptotic stability,
sensibility mechanism with respect to parameters’ variations)
are analyzed for the corresponding closed-loop system. An
illustrative example (simplified helicopter model) ends the paper.

Index Terms— Virtual labs, network control, distributed de-
lay, gamma distribution.

I. INTRODUCTION

The presence of time delays in industrial processes is
an important phenomenon and must be considered in the
stability analysis and controller design [5]. Without any
loss of generality, any data communication process includes
transmission delays, which can induce bad performances
for the overall schemes if their effects are not completely
understood, and taken in consideration. The delays can be
classified as constant or time-varying, bounded or unbounded,
distributed or not, deterministic or stochastic. Control of time-
delay systems is an active research area in the last decade
(see, for instance [3], [1], [9] and the references therein),
and the stability analysis of the corresponding closed-loop
system is not an easy task, mainly to infinite-dimensional
character of the problem (infinite number of poles). Some
simplifications of the problem can be done if one assumes
that the stability property is delay independent (see, e.g. [3],
[1], [9]), but such an hypothesis is not realistic in the case
of communication networks.

In this paper, signal delays due to data-transmission are
considered, which could occur e.g. by large/long bus-system
or by the use of the internet (with TCP/IP or UDP as proto-
cols). There are different ways to overcome this problem. One
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of the strategies is represented by a remote control mech-
anism (control loop runs locally). This is nowadays often
used in the engineering education with virtual laboratories,
as briefly presented in section II.

The other approach is to use the communication delays in
the definition of the control law. Whereas such an approach
seems natural, the problem is largely more complicated since
the delays are time varying, and the time-dependence is very
complicated, and it depends on a lot of network parameters,
as for example the network load and the available bandwidth,
to cite only a few. Furthermore, if the controller and the
plant are spatially separated, the delays occur two times
in the control loop, once from the plant to the controller
(forward direction), and secondly from the controller back
to the plant (backward direction), see Fig. 1. Thus, the
closed-loop system will include several delays (Forward Trip
Time, Backward Trip Time, but also the Round Trip Time)
characterizing all possible communication delays between
the corresponding ”nodes” (controller, plant). In conclusion,
the stability analysis becomes more complicated, as seen in
section III. The model used to describe the communication
delay is represented by some stochastic γ-distribution and
the control law is defined by some simple P (Proportional)
or PD (Proportional-Derivative) law.
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Fig. 1. Schematic drawing of a remote control setup, where time delay
occurs in the Internet connection.
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II. VIRTUAL LABORATORIES

Virtual laboratories entered the engineering education,
where real laboratory hardware experiments are getting con-
trolled over the internet. Because of sharing resources and
being time independent for the students, such an investigation
is made. New internet programming techniques offer a simple
and easy way to put real hardware onto the internet.

The experiment explained here is a test-platform for vi-
bration damping and high-precision positioning of a flexible
structure. The aim of this online experiment is to study
the identification and control of the mechanical vibration in
flexible structures. The students have to identify the system
dynamics and test different control strategies. Finally, they
have to evaluate the quality of the control algorithms. In order
to provide a handy and convenient user-oriented laboratory
experiment, a complete educational unit has to be provided.
To help students to get into the appropriate field, links to
general tutorials as well as a set of documentation to the
particular experiment is accessible over the internet. Before
the student can execute the experiment, a knowledge check
has to be passed. This consists of online questions like
multiple-choice.

The access to the remote experiment is done by an e-
Learning web-portal. This includes a booking system, in
which the registered students can reserve time slices for the
online laboratory experiments.

A. Swinging Rod Hardware Setup

In the design of spacecraft, aircraft, and even building,
the flexibility of structural elements is of concern. This
is especially pronounced in space structures and aircrafts
where large size coupled with lightweight materials empha-
size structural flexibility. The focus of the experiment1 is
an aluminium rod, suspended on a motor. Its sensors and
actuators can be controlled via the Internet. The rod’s length
coupled with its small cross section makes the system quite
flexible. The purpose of this lab is to provide a test platform
for students to analyze structural vibrations, model system
behavior, and design controllers. They can implement their
work on an actual physical system via the Internet or locally
in the laboratory.

The main feature of the ”Swinging Rod” test facility is
shown in Figure 2. It uses a 1.6 meter long aluminium
rod with a small cross section (4x10 mm) as the flexible
component [7]. An excitement of the rod is possible in
one orthogonal direction at the upper end of the rod. The
system is equipped with a DC-Motor as an actuator, used for
disturbing and afterwards to control the rods movement. The
following two sensors are used for the vibration measurement
[4]:

1proposed at the Control Engineering Department in the University of
Siegen
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Fig. 2. Swinging Rod Schematic Drawing.

• A PSD (Position Sensitive Detector) sensor is used for
the position measurement at the tip of the rod. It is an
opto-electronic device which converts an incident light
spot into continuous position data. A lens is fixed at
top of this photo-element; by this an extension of the
working range of 20 centimeters in diameter can be
achieved. The PSD is located on the floor, perpendicular
to the rod. An infrared diode, fixed at the tip of the rod,
beams down towards the sensor.

• The second sensor measures the angular position of
the motor shaft, therefore a built in 4-quadrant encoder
inside the motor is used.

An analogue amplifier drives the motor and delivers the
necessary current. In comparison to PWM (Puls Width Mod-
ulation) amplifiers, no high frequency noise inside the system
can disturb the very small analogue sensor signal from the
PSD with this analogue amplifier.

B. Swinging Rod Software Setup

The software is divided into two main parts, one is the
software to communicate directly with the hardware over
a data acquisition board, and the other program establishes
a remote control over the internet. The control software to
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Fig. 3. Swinging Rod Software Setup and Signal Flow.
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communicate with the hardware is divided into four sub-
modules, see Figure 3.

• The Java Server handles on one side the communication
to the client (student) over the internet, and on the other
side to access the hardware through a DLL library.

• The DLL library is an interface between the Java server
application and the Matlab program, to enable a com-
munication between these applications.

• The real-time code is firstly created by a Mat-
lab/Simulink model. During the experiment, Matlab
starts and stops the real-time process and saves the
sampled data through the WinCon application.

• The WinCon software controls the data acquisition
board of the real-time process (both from the Quanser
[10]) over the RTX (real time kernel) from VentureCom.

The remote control software is implemented in Java, whereas
on the server-side a Java application and on the client (stu-
dent) side a Java-Applet is getting executed. The Java-Applet
is integrated into a web page and accessible inside a web
browser without any special software. The control signals
form the client to the server and the feedback information
backwards get transferred over a socket connection [14].
The sensor data are transferred to the student in form of a
graph after the particular test-run is finished. The rod is also
observed by a web camera to get a better expression of the
oscillating rod and to see how well the controller works.

The real-time control loop is running here locally on a real
time hardware platform. The remote control is only used to
transfer parameters and to start the system. No time delay
difficulties occur in this control loop. The next section will
explain a remote controllable laboratory experiment with a
spatially distributed controller and hardware plant over the
network, where stochastic delays occur.

III. CONTROL OVER THE NETWORK

A simplified control scheme is shown in Figure 4, where
Gc denotes the controller, Gheli the plant, r the desired
input and y the plant output. The time delay occurs from
the controller to the plant and again from the plant backward
to the control unit through some network connections.

One of the problems to be considered is represented by
the delay models of the corresponding network connections.
The simplest model is represented by a time-delay block,
where the delay is assumed constant, but uncertain inside the
prescribed, and known interval [τmin, τmax), where τmin >
0. In such a case, the analysis of the closed-loop system can
be done using frequency- and time-domain methods similar
to the ones proposed by [3] and [8]. Thus, for example,
one (necessary and sufficient) delay margin can be explicitly
computed using matrix pencil methods. However, such a
model is quite restrictive since it does not take into account
the real influence of the network environment (bandwidth
available; number of users; control mechanism strategies).
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Fig. 4. Closed loop system with time-delays in the communication channels.

A second idea is to consider the delay as a bounded time
varying function and to use some time-domain methods to
perform the stability analysis, such an approach was consid-
ered by [11], for which a Lyapunov-Razumikhin function was
used. The controller’s gains have been computed using some
genetic algorithm strategies. Furthermore some limitations on
the approach have been discussed in [11].

One of the ways to reduce the conservatism of the method
is to derive a more accurate model for representing the delay
in the network. In this sense, it seems (see, for instance, sec-
tion III-A) that a gamma distribution delay is better adapted
for the control problem considered here. The proposed con-
troller approach uses a probability model of the time delay
in the network to estimate the data package delay, and
the closed-loop system reduces to some particular integro-
differential equations. Next, the analysis will be performed
with respect to some controller parameters. This approach is
applied on some helicopter laboratory experiment, controlled
over Internet. To the best of the authors’ knowledge, such an
approach for controlling helicopter elevation over networks
was not considered before.

A. Gamma Model of the Network Delay

Roughly speaking, the delay in the network is the sum
of a constant component and a “dynamic” (time-varying)
component: while the constant term depends on the signal
propagation time (from some source to the corresponding
destination), which is assumed to be the absolute minimum
propagation delay value, occurring during the overall mea-
surement, the varying delay occurs due to data collisions and
routing problems on the network and is considered to have
a stochastic nature.

For the delay analysis, we need to measure the round
trip time between two computers in the network. In Figure
5 are some measurements shown, which describe the con-
nection between a computer in Compiègne/France to one in
Ohio/USA. The minimum delay is always larger than 60 ms,
which results in the signal propagation time, and is assumed
to be the minimum delay which could occur during this
overall connection. The maximum delay goes up to 333 ms
for just a few peaks, while the average delay is 101 ms.

The next step is now to describe this delay measurement
in a probability density sense. Mathematical models for
describing the time delay in a network are mainly used in
internet telephony, also known as VoIP (Voice over IP). In
order to deliver a good quality of service to the people who

1650



use the Internet connection to make phone calls, signal delays
must be considered carefully. In general, the network delay
is modelled as a gamma distribution model or as a power
approximation, as in [2]. In the sequel, we shall consider,
and focus on a gamma distribution model.

Figure 6 shows the probability density distribution of
the measured signal delay from Figure 5. In addition, the
estimated mathematical model of the gamma distribution is
overlapped. It can be seen that the main (highest) peak occurs
for both curves (more or less) at the same time delay. The
parameters of the identified gamma density distribution are
αmed = 5 and βmed = 0.020, and within a 95% confidence
bound we get 3 < α < 7 and 0.012 < β < 0.032 for
α ∈ N, β ∈ R. The gamma probability density function has
the following form

g(t|a, b) =
tα−1 · e

−t/β

βα · Γ(α)
. (1)

The gamma function is defined as follows

Γ(α) =
∫ ∞

0

e−ttα−1dt. (2)

The dotted line shows in addition the cumulative distribution
function. According to [13], a gamma distribution model for
time-delays in the network “fits” relatively well to the real
behavior. The delay behavior changes in general for each
new established connection, therefore different parameters for
the gamma model should be used. To solve this problem,
a software module was developed by [13], to perform a
delay measurement and get directly the parameters for the
corresponding gamma distribution model. These parameters
are computed and explicitly given in some intervals. Note that
this software could be used for a real application directly
before the remote control starts, to calculate the gamma
function parameters in order to get further the controller
parameters.
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Fig. 5. Time delay measurement between two computers in the network.
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Fig. 6. Gamma distribution model of the network delay.

B. Controller Design

The design of a stabilizing controller for a system with a
stochastically varying time delay is in general a challenge. As
briefly presented in the previous section, the gamma distribu-
tion can be used to model the delay in networks. In the sequel,
we focus on designing a controller for a dynamical system
where the interest is to have a prescribed dynamical behavior
in closed-loop under some network uncertain evolution that
is a ”trade-off” between network environment and system’s
behavior.

If we consider a network model according to Figure 7, it
can be described as in the sequel, where g(t) denotes the
(time-varying) network delay, which follows the distribution
law presented in section III-A. Such a distributed delay can
be used to design a controller, where the following equation
holds.

FTT : y1(t) =
∫ t

−∞
g1(t − θ − τprop,FTT )u1(θ)dθ, (3)

BTT : y2(t) =
∫ t

−∞
g2(t − θ − τprop,BTT )u2(θ)dθ. (4)

The network delay can be partitioned as FTT (Forward
Trip Time) and BTT (Backward Trip Time). The gamma
distribution presented above gives the total RTT (Round Trip
Time). The network delay model is described by g1 and g2,
the network outputs are y1 and y2, the network inputs are u1

and u2, according to Figure 7. The signal propagation delay,
when no charge is in the network, is given by τprop,BTT and
τprop,FTT (no collisions and no routing problems occur). For
simplification purposes, we assume that τprop,BTT

∼= 0 and
τprop,FTT

∼= 0. One assumes similar behaviors on FTT and
BTT, which allow to define symmetric channels, so we can
assume to have FTT (α1, β) and BTT (α−α1, β) according
to the distribution derived in III-A, with α1 ∈ N .
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Fig. 7. Network delay, partitioned in FTT and BTT.

Consider now a dynamical system given by

Gp(s) =
P (s)
Q(s)

. The Laplace transform of the gamma

probability density function of equation (1) is derived for
FTT and BTT as:

FTT α1
β (s) =

1

(βs + 1)α1 , BTT α−α1
β (s) =

1

(βs + 1)α−α1
.

Assuming a controller of the general form Gc(s) =
N(s)
D(s)

,

then we get the following closed loop transfer function

Gcl =
GcGpFTTα1

β

1 + GcGpFTTα1
β BTTα−α1

β

. (5)

Thus, the complete closed-loop transfer function becomes:

Gcl =
N (s)P (s) (βs + 1)α−α1

D (s) Q (s) (βs + 1)α + N (s)P (s)
. (6)

Among the ideas that can be used to construct a controller,
we consider the standard pole placement approach.

C. Sensitivity Computing
It is now of interest to know the way the poles of the

closed-loop system move by varying the gamma parameters.
In the sequel, the average delay defined by τ = α · β
is used as a parameter for defining the sensitivity of the
roots λ = λ(τ), for all τ ∈ [τ , τ ] of the corresponding
characteristic function. For the sake of simplicity, assume
that the dominant (“rightmost”) roots are simple, and assume
also that the function λ(τ) is differentiable. Under these
assumptions, define now R(τ) =:

d

dτ

[
D (λ(τ)) Q (λ(τ))

(
τ

α
λ(τ) + 1

)α

+ N (λ(τ)) P (λ(τ))
]

.

(7)
Since we consider only the stability issues, the main problem

will be to analyze the cases when dominant (“rightmost”)
roots cross the imaginary axis, if any, when τ is varying
inside the corresponding interval [τ , τ ]. More explicitly, we
shall focus on the crossing direction, which is given by:

sgn
{
�e [R(s)]|s=jw

}
, (8)

with the rule that the crossing is towards stability (instability)
if the value of (8) is −1(+1) (see also the example below).

D. Illustrative Example

The system under consideration is represented by a He-
licopter model [10], see Fig. 8, and it consists of a fixed
base, on which a rotary arm is mounted. The arm carries the
helicopter body on one end, and a counterweight on the other.

Fig. 8. Schematic drawing of the helicopter model.

The arm can make an elevation motion around the angle
epsilon. An encoder mounted on the axis allows measuring
the elevation angle of the arm. The helicopter body is fixed
at one end of the arm and is free to elevate in a certain
range. Two motors with propellers mounted on the helicopter
arm can generate a force proportional to the voltage applied
to the motors. The force generated by the propellers cause
the helicopter body to lift off the ground. The purpose of
the counterweight is to reduce the power requirements on
the motors around equilibrium. The corresponding nonlinear
mathematical model is:

Jges · ε̈ = −g · y · (M + m) · sin(ε) + 2 · kt · r · v(t), (9)

where kt, g represent the motor, and gravity constants, m and
M denote the mass of the helicopter blades inclusive motors
and the fixing devices, and the counterweight, respectively,
v(t) the corresponding voltage, and Jges the moment of
inertia around the rotating point (see also Fig. 8). In order
to simplify the analysis, the model will be linearized around
the quiescent point. For ε = 0, one gets:

Jges · ε̈ = −g · y · (M + m) · ε + 2 · kt · r · v, (10)

and finally, after the damping factor identification, the
helicopter transfer function results in [12]:

G(s) =
Kp

s2 + ds + c
=

0.2607
s2 + 0.07441s + 2.904

(11)

In the sequel, we shall use the plant model given by (11).
1) Controller Design: Consider now a simple PD-

controller for improving the system response of the above
helicopter laboratory experiment, control law given by Gc =
(K1s + K2). Next we analyze the closed-loop stability with
respect to the controller gains K1, K2, that is the distribution
of roots of the following characteristic equation:

Q(s, α, β) =
(
s2 + d · s + c

)
(βs + 1)α +(K1s + K2) Kp, (12)

where α and β are the gamma probability density function
parameters. We assume first that α = αmed and β = βmed

for defining appropriate controller gain parameters. Next, we
increase successively the control parameters K1 and K2,
while the real part of the dominant (“rightmost”) poles is
regarded, as we can see in Fig. 9, and the controller gains
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Fig. 9. Maximum real part of the (dominant) poles by varying the controller
parameters K1 and K2.

can be chosen, for example, by using the distance to the
imaginary axis as criterion. The optimization approach for
getting better controller parameters can be improved. One of
the ideas is to use a more advanced search like a genetic
algorithm.

2) Sensitivity computing: The next step is now to look
how stable the corresponding closed-loop system is for
varying time delays. In section III-A we gave a confidence
interval for the gamma distribution parameters. It is further
of interest how the roots change while varying α and β
inside this given intervals. For a better understanding of the
gamma probability density function parameters, we look to
the average delay value, which is defined as τ = α · β.
Inside the 95% confidence interval, the average delay varies
in 0.036 < τ < 0.256.

Take for instance K1 = 16.5, and K2 = 19.5 as gain
parameters, corresponding to the step 780 in fig.9, and let
us analyze the pole locations in the complex s-domain for
different gamma parameters. Fig.10 shows the way the roots
of the corresponding characteristic equation are moving by
varying β inside the given interval for a fixed α to αmed = 5,
which means by varying τ inside the interval [0.036, 0.256].
It is easy to see that all the roots move towards the imaginary
axis by increasing the average delay value. However, the real
part of the dominant (“rightmost”) roots λd(τ) stays in the
left half plane, and we have: Re(λd(τ)) < −0.3563.

IV. CONCLUSION

The remote controllable experiment presented in the con-
text of the virtual laboratory in the first part of the paper is
a simple approach for a remote controllable system, where
the control loop runs local. But if a distributed control has
to be achieved, the stochastic nature of the time-delay in
the network must be considered. Simulation results showed
a stable behavior of the corresponding closed-loop system.
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Fig. 10. The sensitivity graph shows the root locations by varying the
gamma parameter β for a fixed α to αmed = 5.

The further work is to implement the above controller design
on the real system with a remote control computer, and to
analyze its behavior in the real environment.
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