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This paper presents the Remotely Accessible Laboratory
(REAL), a virtual laboratory accessible through the Internet.
REAL allows a remote user to manipulate a mobile robot in a
mode of interaction suitable to his or her level of expertise. A basic
mode of interaction, dedicated to users with limited knowledge
of robotics, supports interaction via teleoperation. In a more
advanced level of interaction, expert users can plan and execute
complex robotics experiments that exploit the full capabilities of
the robot. In this mode of interaction, experiments in the field of
autonomous navigation, environmental mapping, sensor fusion,
mission planning, and robot control can be performed. Finally,
a third mode of interaction allows a set of trainees to follow the
interactions conducted by an instructor. The architecture of REAL
departs from the commonplace World Wide Web applications, since
it employs a sophisticated software architecture based on software
components. This architecture presents a high degree of reusability
that future developments in the field of Internet robots and virtual
laboratories can take advantage of.

Keywords—Robotics, scientific and engineering applications,
software architectures, telecommunication applications, tele-
matics.

I. INTRODUCTION

Being traditionally employed for information sharing and
exchanging, the Internet has become an important telecom-
munication infrastructure. The reason is the ubiquity of the
Internet added to a permanent increasing of capacity in both
core and access networks. New telecommunication-centric
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(or telematic) services offered through the Internet empha-
size interpersonal interaction as well as interaction with
remote environments (real or virtual). Such rich interaction
schemes need the manipulation of continuous flows of
information carrying audio and video. Of course, these
services are enriched with information already manipulated
by today’s Web applications, including static and animated
imaging, recorded audio and video, and text. In short, new
Internet applications and telecommunication services are
converging. As such, Internet applications must incorporate
solutions to issues as real-time communication, quality
of service (QoS), multiplicity of users, usage control and
management, security and privacy, and, in some cases,
billing.

Among these new applications, virtual laboratories (vir-
tual labs) are of special interest. References [1]–[8] describe
projects in the field of virtual laboratories and Internet robots.
A virtual lab allows users to perform experiments from a re-
mote location. Users can plan and conduct experiments, col-
lect experimental data, and analyze the results as if they were
physically present in the laboratory. Depending on the type
of experiments supported, virtual labs must provide some
teleimmersion mechanism in order to ”transport” the user to
the lab. For instance, in the field of mobile robots, a virtual
lab must allow the user to follow the robot during a user’s
submitted mission. This can be accomplished by live video
(and audio) channels, recorded video (downloaded and pre-
senteda posteriori), animated models, bidimensional maps,
or a combination of these.

Building applications as virtual labs is still cumber-
some due to complexities involved in continuous media
processing, strict usage control (subscription, usage upon
reservation, security checks, etc.), asynchronous notifica-
tions of many kinds, among others. The development of
REAL (Remotely Accessible Laboratory) [1], a virtual lab in
the field of mobile robots, has shown that a component-based
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software development can lower the development costs,
improve reliability, and favor permanent improvements [9],
[10]. Although well-established component models can be
employed for coding many service functions, they lack of
support for functions peculiar to telematic services such
as media streaming and reliable notification mechanisms.
Moreover, current component models are designed for ho-
mogeneous environments, a severe limitation for telematic
services and other complex applications.

By the beginning of 2002, the Object Management
Group (OMG) standardized a component model for the
Common Object Request Broker Architecture (CORBA).
The CORBA Component Model (CCM) [11] is not tight-
ened to a particular environment, meaning that components
developed according to this model can be deployed across
multiple platforms. Due to its recency, products and tools
supporting CCM in its full extent are not available yet.

To build a reliable architecture for REAL, we designed
and implemented a component model suitable for telematic
services: CCM-tel. CCM-tel is neutral, based on CORBA,
and shares many common features with CCM, such as the
ability of components to send asynchronous notification
messages through a reliable notification channel (both
unicast and multicast notification schemes are supported).
However, two key differences are worthy of mention. First,
CCM-tel supports stream interfaces able to produce, transfer,
and consume media flows such as live audio and video.
Stream interfaces can establish unicast (single producer/con-
sumer) and multicast (single producer/multiple consumers)
connections. Such interfaces are absent in the component
models currently available. Second, CCM-tel components
are specified in Extensible Markup Language (XML). As
such, code generation can be accomplished by transforming
the XML document that specifies the component into text
documents containing Java and Interface Description Lan-
guage (IDL) pieces of code that implement the component.
XML document transformations are specified through Ex-
tensible Stylesheet Language Transformation (XSLT) [12],
a standard from the World Wide Web Consortium. XSLT
processors such as Xalan-Java [13] perform XML document
transformations.

The paper is organized as follows. Section II presents the
architecture of REAL, providing a brief overview of the
CCM-tel component model. The next three sections present
how users can interact with the virtual lab. Section III
describes a mode of interaction suitable for nonexpert users.
Section IV presents the advanced mode of interaction within
which expert users can plan and execute complex robotics
experiments. Section V presents a mode of interaction where
trainees can follow the actions conducted by an instructor.
Section VI details the implementation of the architecture of
REAL. Finally, Section VII presents concluding remarks.

II. THE ARCHITECTURE OFREAL

The functionalities implemented by REAL such as
teleoperation and ability to execute user-supplied code can
be found on many similar projects such as those reported

Fig. 1. Architectural pattern adopted by REAL.

Fig. 2. Architecture of a CCM-tel container.

in [2], [4], [8], and [14]. However, REAL differs from
those projects in its software architecture. Instead of imple-
menting a software architecture based on distributed objects,
REAL employs a component-based software architecture.
Component-based software architectures have most of
their code generated from specification. In addition, most
nonfunctional aspects such as QoS, security, and persistence
are provided by the run-time environment supporting the
components. As a result, component-based software devel-
opments lead to more reliable, efficient, and cost-effective
software systems [10].

The architecture of REAL follows an architectural pattern
shown in Fig. 1. The object request broker (ORB) is an
interconnection infrastructure compliant to CORBA. The
ORB interconnects a set of CORBA services and containers.
Examples of CORBA services include the property service
[15], event service [16], and media streaming service [17].
Containers are places where components are instantiated
for execution. Containers provide the necessary resources
needed by the components (e.g., resources for execution,
communication, and storage).

The architecture of a container is presented in Fig. 2 and
consists of five major elements.

1) Component factory (home): an object exposing
an interface for component creation, location, and
destruction.

2) Home finder: an object exposing an interface for
finding homes within the container.

3) Component framework: classes providing the infra-
structure needed by a component to interact with the
container and with other components.

4) Portable object adapter (POA): ORB functions respon-
sible for managing servant objects.

5) Portable interceptor: object responsible for inter-
cepting the interaction among the components and
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Fig. 3. Structure of a CCM-tel component.

taking appropriate actions such as security check and
resource reservation.

A CCM-tel component’s is structure presented in Fig. 3.
The component consists of a set of servant objects, each one
exposing an interface with methods accessible through the
ORB. Three categories of interfaces are supported.

1) Equivalent interfaces: these provide basic access oper-
ations for retrieving the component’s remaining inter-
faces, its home, and its unique identifier.

2) Ports: interfaces performing complementary roles
such as client/server and producer/consumer (comple-
mentary ports are connected during the configuration
phase of an application).

3) Property sets: interfaces providing access to the com-
ponent’s properties (attribute-value pairs holding in-
formation about state or configuration).

A component has a single equivalent interface and an
arbitrary number of ports and property sets.

Six types of ports are supported by CCM-tel.

1) Event sources: interfaces able to produce asyn-
chronous notification messages (events).

2) Event sinks: interfaces able to consume events when
connected to event sources.

3) Flow producers: interfaces able to capture and transmit
audio or video.

4) Flow consumers: interfaces able to receive and present
audio or video when connected to flow producers.

5) Facets: general purpose interfaces supporting syn-
chronous, remote procedure call-style operations.

6) Receptacles: these hold references to facets exposed
by other components.

Properties, notification, and media streaming are transpar-
ently supported by the respective OMG service. The compo-
nent frameworks in the container hide the manipulation of
these services from the component developer.

A set of CCM-tel components were developed for REAL
and grouped into three categories [18]: access, service, and
communication components. Each category supports a cor-
respondingsession. An access session allows the user to sub-
scribe/unsubscribe to the services, to authenticate subscribed
users, and to start a subscribed service. A service session
is established when the user starts a service and allows the

user to perform the permitted actions (e.g., to manipulate the
robot). Finally, the communication session is responsible for
establishing media streaming connections necessary to the
service. The service components for each mode of interac-
tion will be described in the next sections. Access and com-
munication components are described in the sequence.

A. Access Components

Access components implement part of the service archi-
tecture as specified by the Telecommunication Information
Network Architecture Consortium [18]. These components
support the establishment of access sessions between the ser-
vice user and the service provider.

At the user’s domain, two access components of the
service architecture are installed. The provider agent (PA)
component represents the service provider at the user’s do-
main. It holds information about the access session the user
has established, such as who the user is, his or her privileges,
service sessions in course, and so on. The asUAP (access
session—User Application) provides an interface that allows
the user to establish a access session, to start services, and
to receive notifications from the service provider.

From the service provider’s point of view, the service ar-
chitecture offers a set of facilities for usage statistics, access
control (usage upon reservation, for instance), and service
control (service aborting due to time expiration, for instance).
Four main components at the service provider’s side are the
following.

1) Initial agent (IA): the component responsible for the
establishment of access sessions between users and the
service provider.

2) User agent (UA): this represents the user at the service
provider’s domain, being instantiated by the IA when
a service session is established.

3) Service factory (SF): this instantiates the service and
communication components.

4) Service session manager (SSM): this manages a ser-
vice session and provides statistics about the utiliza-
tion of the service.

The service architecture is highly modular and can provide
access control to a wide range of telematic services. Fig. 4
shows how the components previously described are inter-
connected (dotted lines) and deployed.

B. Communication Components

Communication components support the establishment
of communication sessions. In REAL, the communication
session consists of two identical multicast video channels. A
video channel is assembled by interconnecting one or more
components exposing a video consumer port to a component
exposing a video producer port. One channel transports
live video captured from the robot’s onboard camera, while
the second channel transports live video captured from a
panoramic camera pointed to the robot’s environment. Fig. 5
shows the components employed in the communication
session. Although a single video consumer component is
shown, multiple consumers are supported as demanded
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Fig. 4. Components supporting the access session in REAL.

Fig. 5. Components supporting the communication session in
REAL.

by the learning mode of interaction. Since components
with stream ports perform CPU-intensive tasks (e.g., media
capturing, encoding/decoding, and presentation), they are
normally deployed on separate containers that provide
dedicated resources for them.

III. T HE BASIC MODE OFINTERACTION

The basic mode of interaction offers two simplified forms
of interaction with the robot. One form of interaction offers
an interface that mimics a joystick. This interface allows the
user to turn the robot in steps of 45, to move straightforward
in a step from 0.20 m to 2.0 m, or to perform both move-
ments (turn, then move). In a second form of interaction, the
user supplies the robot with a target and issues a command
to move the robot to the target. The robot tries to reach the
target by employing a navigation algorithm based on poten-
tial fields [19].

The user can follow the robot through a simplified position
map. This map shows the obstacles constraining the robot
movements, the robot itself, and the target (if set). Fig. 6
shows the user interface to the basic mode of interaction. The
video panels maintained by the communication session are
placed on the upper part of the interface while the position
map and joystick interfaces are placed on the bottom part.

At the service provider’s domain, two components are
deployed. The Telecommand component exposes a facet
port with three main methods: move, turn, and move to
target. Once a method is called, the component translates
its arguments to the corresponding robot movements. The

Position Emitter component is responsible for updating the
position map. This component reads the robot position in
intervals of 1 s and generates asynchronous notification
messages through an event source port. Notification mes-
sages encode the robot’s current coordinates obtained from
telemetry. Both Telecommand and Position Emitter com-
ponents interact with a navigation software running on the
processor controlling the robot.

At the user’s side, two components are deployed: the
Joystick Interface and the Position Map components. Both
components have a receptacle port connected to the Telecom-
mand’s facet port. The Position Map component also exposes
an event sink port that consumes notification messages gen-
erated by the Position Emitter component. Fig. 7 shows the
components supporting the basic mode of interaction. In
addition to these components, the components supporting
the communication session (see Fig. 5) are deployed as
well.

IV. THE ADVANCED MODE OFINTERACTION

The advanced mode of interaction allows expert users
to test their own algorithms in a real-world environment.
Such algorithms can exploit many areas of robotics, such
as autonomous navigation, environmental mapping, sensor
fusion, mission planning, and robot control. User-developed
algorithms are coded in the C programming language; they
run on the robot’s control processor, and can perform any
operation supported by the robot’s application programming
interface (e.g., to perform a movement, to read a sensor,
and to store data for off-line processing). An amount of
disk space on the REAL file server is allocated to each
subscribed user for storing their source code, compiled code,
and mission-acquired data.

On the user’s domain, a component implementing a user
interface for code submission is deployed. This interface
presents the user with a file chooser (see Fig. 8) for browsing
the local file system or his/her area on the REAL file server.
Once a file is selected, it can be transferred, compiled, or
executed on the processor that controls the robot. Files are
transferred through a Transmission Control Protocol/In-
ternet Protocol (TCP/IP) connection, since CORBA has no
standard way to transfer large amounts of data through the
ORB.1

On the service provider’s side, a File Manager component
implements the file server. This component exposes a facet
port, a property set, and an event source port. The facet port
defines methods for file transferring, compilation, and execu-
tion. The property set stores information about the file being
manipulated (file name, file owner, directives for compila-
tion, etc.). Finally, the event source port emits notification
messages to the user’s interface such as end of file trans-
ferring, URL of a page containing compilation results (pre-
sented on a separate user’s navigator window), and mission
status (e.g., abort messages). Fig. 9 presents the components
supporting the advanced mode of interaction. As in the basic

1File contents can be transferred as sequences of octets, but ORBs may
impose some maximum size for such sequences.
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Fig. 6. The interface of the basic mode of interaction.

Fig. 7. The components supporting the basic mode of interaction.

mode of interaction, a communication session is established
when the service session starts.

Both modes of interaction require a set of preventive mea-
sures against a faulty or malicious navigation algorithm or
sequence of movements. These measures are implemented
as a high-priority security daemon that periodically stops
the navigation program, scans the sonar ring, and, based on
the robot’s direction and speed, determines if the robot is
keeping a safe distance from obstacles. If this is the case, the
navigation program resumes. Otherwise, the daemon stops
the robot and kills the navigation program. In this case, the
File Manager component is notified and issues a “navigation
abort” notification event to the user.

V. THE LEARNING MODE OFINTERACTION

The learning mode of interaction offers a collaborative en-
vironment that allows multiple users to access the virtual
lab at the same time. At the present, only a principal user

(instructor) can interact with the robot, being the remaining
users (trainees) able only to follow the robot with the aid of
video panels and position map, as in the basic mode of in-
teraction. Except for the instructor, the same interface of the
basic mode of interaction is presented, but with the interac-
tion capabilities disabled. The instructor can access the robot
employing the basic or advanced modes of interaction.

The learning mode of interaction has the communication
session enhanced with a multicast audio channel carrying
voice from the instructor to the trainees. The audio channel
employs two complementary components with audio ports.
In addition, a facility for presenting didactic material was
incorporated. This presentation facility also employs two
complementary components. A Slide Chooser component
is deployed at the instructor’s computer and presents an
interface containing a list of Web links (a series of slides
in GIF format, for instance). When the user clicks on one
element of the list, an event port emits an asynchronous
notification encoding the URL assigned to the selected link. A
complementary component, the Slide Presenter, deployed on
each trainee’s computer, receives the notification messages,
extracts theURL,accesses itscontentsviaHTTP,andpresents
the contents on a navigator’s frame.

The learning mode of interaction demands multicast com-
munication for audio, video, and notification messages. This
form of communication is supported by the CCM-tel com-
ponent model. Fig. 10 shows the additional components sup-
porting the learning mode of interaction. Each component

444 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 3, MARCH 2003



Fig. 8. The interface of the advanced mode of interaction.

Fig. 9. The components supporting the advanced mode of
interaction.

shown is deployed on separate container. A text-based chat
capability was added to this mode of interaction in order
to provide a low-bandwidth feedback mechanism from the
trainees. The components supporting the chat service are not
shown in Fig. 10.

VI. I MPLEMENTATION ISSUES

The software modules that interact directly with the robot
must be written in the C programming language as demanded
by the XR4000 application programming interface. User-
supplied software and a set of modules supporting the three
modes of interaction belong to this category. C-based soft-
ware runs an a processor dedicated to robot control.

The code implementing the access, service logic, and
communication consists of a set of software components as
described in the previous sections. These components were

Fig. 10. Additional components supporting the learning mode
of interaction.

coded in the Java programming language [20] with most
of their code generated directly from their corresponding
XML specification. CCM-Builder is a tool that generates
component homes and component frameworks for each
specified component. For instance, the Video Consumer
component shown in Fig. 5 is generated by CCM-Builder
from the following XML specification:

component
type = "VideoConsumer"/

ports
!-- video player port --
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flow-consumer name = "REAL-Camera"
mediatype = "video"
/ports

/component

Like components, containers are specified in XML and
have their code generated by CCM-Builder. For instance, the
component specified previously has its container specified in
XML as the following.

container
type = "VideoPanel"
deployment-form = "applet"

!-- components in this container --
components
componenttype type =

"VideoConsumer"/
/components
!-- POA policies --
poapolicies

thread = "ORB_CTRL_MODEL"
lifespan = "TRANSIENT"/
/poapolicies

/container

Components deployed at the service provider’s domain
are implemented as Java processes, while those deployed at
the user’s domain are implemented as signed Java applets.
A Web browser enhanced with the Java 2 plug-in is the only
execution environment required at the user’s side. A XML
file named deployment descriptorspecifies deployment
attributes for each container. Examples of deployment at-
tributes include media-related parameters (e.g., video frame
size and rate), ORB parameters (name server location, inter-
ceptors, etc.), and application-specific parameters. From the
deployment descriptor, CCM-Builder generates shell scripts
for deploying process-based containers or HTML files for
deploying applet-based containers.

Java IDL [21], the CORBA implementation of the Java 2
platform, was employed in both client and service provider
sides. The CORBA services (property, event and media
streaming) were entirely coded in the Java programming lan-
guage. Media streaming relies on the Java Media Framework
API [22] for audio and video capturing and presentation.

A local area network (LAN) connects a set of server pro-
cessors, a router reaching the Internet, and two wireless LAN
(WLAN) access points (see Fig. 11). The containers at the
service provider’s side are deployed on two separate proces-
sors. A third processor runs an HTTP server and stores the
HTML and JAR files to be deployed at the user’s domain.

The XR4000 mobile robot has two onboard processors
dedicated to robot control. These processors employ a
WLAN link of 1.6 Mb/s to communicate with the robot’s
control processor connected to the wired LAN. This pro-
cessor runs the software that interacts directly with the
robot (user-supplied code, security daemon, etc.). A laptop
computer, fixed on the robot’s top, performs video capturing

Fig. 11. The hardware infrastructure of REAL.

from the onboard camera and is connected to WLAN access
point through a link of 11 Mb/s.

The laptop computer runs the Windows 2000 operating
system. All the remaining processors, including the robot’s
onboard ones, run the Linux operating system.

VII. CONCLUSION

New Internet applications such as virtual laboratories and
Internet robots are closer to telecommunication services than
to commonplace Web applications. The reasons are clear:
1) the roles of service provider and service user are well
identified; 2) strict control and management of subscrip-
tion, access, and use of the service must be enforced; and
3) telecom-related issues such as real-time communication,
QoS, security, and privacy must be well addressed.

Virtual laboratories and Internet robot services demand a
high volume of software that must operate efficiently and
reliably. A component-based software development process
is able to fulfill such demands. As today’s component models
require a homogeneous distributed environment, we focused
on the CCM, a neutral component model standardized by the
OMG.

We developed CCM-tel, a neutral component model based
on CORBA and suitable for building telematic services
accessed through the Internet. REAL has demonstrated that
software components are valuable, since they decrease the
development costs and improve the quality of the code.
All the components developed for REAL are based on the
CCM-tel model.

Today, REAL is being evaluated by the institutions partici-
pating in its development. We plan to have a version of REAL
supporting undergraduate projects in the field of robotics and
artificial intelligence. This version will employ less sophisti-
cated robotic equipment with a Java-based programming in-
terface more suitable for educational projects.
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