ERVICE-ORIENTED
ARCHITECTURE

Web services provide a way
to offer remote control of
scattered scientific instruments,

enabling online labs that students
can use from anywhere, at any time.

Yuhong Yan, Yong Liang, Xinge Du,

Hamadou Saliah-Hassane, and Ali Ghorbani

Putting Labs Online

n science and engineering education, exper-
imentation plays a crucial role. The classic
university science course entails lecture and
lab: students’ active participation in experi-
ments enhances their understanding of the prin-
ciples described in the lectures. However, not
every educational institution can afford all the
experimental equipment it would like. Moreover,
colleges and universities increasingly offer
distance-learning programs, allowing students to
attend lectures and seminars and complete
coursework using the Internet. In situations such
as these, access to online laboratories or experi-
ment systems can greatly enhance student learn-
ing—increasing the range of experiments
available at an institution and giving the distance
learners hands-on, real-time experience.

Online laboratories, however, are not as mature
as online courses. Current online experiment sys-
tems fall into two categories: virtual laboratories
provide a simulation envi-
ronment in which students
conduct experiments; remote
laboratories,our focus in this
article, let students use a GUI

Online Experiment
Systems: Other
Architectures

Web Service Glossary

Anatomy of an Online
Experiment

Finding a Lab Online

1520-9202/06/$20.00 © 2006 IEEE

to operate actual instruments
via remote control.

The difficulty with creating
an effective laboratory oper-
ated by remote control is
making scattered computa-
tional resources and instru-
ments operable across plat-
forms. Existing online exper-

Published by the IEEE Computer Society

with Web Services

iment systems commonly use a classic client-sever
architecture and off-the-shelf middleware for com-
munication. (The “Online Experiment Systems:
Other Architectures” sidebar lists sources.)
Normally, to ensure interoperability, these systems
rely on instruments from a single company—such
as National Instruments or Agilent—and Micro-
soft Windows as the common operating system.
Users must then install additional software to oper-
ate the remote instruments. For a student using an
old laptop or the computer at a public library, this
could be difficult. So, online labs configured this
way can’t achieve the ultimate goals of sharing het-
erogeneous resources among online laboratories
and easy access via the Web.

Our solution to these shortcomings is to base
online experiment systems on Web services, which
are designed to support interoperable, machine-
to-machine interaction over a network and can
also integrate heterogeneous resources. We have
devised a service-oriented architecture for online
experiment systems, enabled by Web service pro-
tocols,and a methodology for wrapping the oper-
ations of the instruments into Web services.

Although these methods aren’t suitable for
time-critical missions or applications that need
real-time control, such as robot operation, they
do work for controlling standard commercial
instruments over low-speed or unreliable com-
munication networks—the types of networks
available to many college students. Using this
framework, we can create an online experiment
system for students—or an online research lab for
scientists—that incorporates a great variety of

March | April 2006 IT Pro

27

28

SERVICE-ORIENTED ARCHITECTURE

Online Experiment Systems:

Other Architectures

> “Information Technology Enhanced Learning in Distance and Conventional
Education,” H.A. Latchman and colleagues, IEEE Trans. Education, Nov.
1999, pp. 247-254.

» “The Microelectronics WebLab 6.0—An Implementation Using Web
Services and the iLab Shared Architecture,” Hardison and colleagues, Proc.
Int’l Conf. Engineering Education and Research (iCEER2005), Int’]l
Network for Engineering Education and Research, 2005; http://www-
mtl.mit.edu/~alamo/pdf/2005/RC-107 %20paper.pdf.

> “Model for a Distributed Telelaboratory Interface Generator,” B. Fattouh
and H.H. Saliah, Proc. Int’l Conf. Engineering Education and Research,
Int’l Network for Engineering Education and Research, 2004.

> “The ‘Remote Electronic Lab’ as a Part of the Telelearning Concept at the
Carinthia Tech Institute,” M.E. Auer and W. Gallent, Proc. Interactive
Computer-Aided Learning (ICL), Kassel University Press, 2000.

>» “XML Technologies to Design Didactical Distributed Measurement
Laboratories,” A. Bagnasco, M. Chirico, and A.M. Scapolla, Proc. IEEE
Instrumentation and Measurement Tech. Conf. AIMTC), IEEE, 2002, pp.
651-655.

Figure 1. Double client-server architecture
for an online experiment system.

Registry server I

2 Service

¢ 1

; Online .
Client Web Service

> browser server € lab 2

management S

SOAP Service

messages N

instruments and that users can access without installing

systems can then interact with a
Web service as its definition pre-
scribes, using XML-based mes-
sages conveyed by Internet
protocols such as SOAP.

Figure 1 diagrams our double
client-server architecture for an
online experiment system. The
first client-server architecture
mediates between the client’s
browser and the Web server
associated with the online lab
management system. The second
client-server architecture medi-
ates between the online lab man-
agement system and scattered
resources wrapped as Web serv-
ices. The online laboratory uses
SOAP messages to communi-
cate with the remote resources.

The online lab management
system is the key component in
this architecture. It has standard
learning management functions
such as tutorial management,
student management, and so on.
It can also use remote Web serv-
ices. The system works in a series
of steps, indicated by the num-
bered green circles in Figure 1:

1. A service provider registers
its services in a UDDI reg-
istry server.

2. A service requester searches
the registry server and finds
all the potential resources. It
selects the proper services
based on its own criteria.

3. The service requester sends
SOAP messages directly to
the service provider to invoke
the remote service.

special software.

SERVICE-ORIENTED ARCHITECTURE
FOR AN ONLINE EXPERIMENT SYSTEM

A Web service is a software system that typically relies
on any alphabet soup of standards, as listed in the “Web
Service Glossary” sidebar. Identified by a URI, a Web serv-
ice has public interfaces and bindings defined and
described in XML, specifically, the WSDL format. Other
software systems can discover the Web service definition—
for example, via a registry server using UDDI. These other

IT Pro March | April 2006

Our focus in this article is how to integrate the hetero-
geneous experiment resources using Web services—that
is,step 3 in Figure 1. We won’t cover process integration—
how to discover the relevant resources and flexibly deter-
mine the operation process for an experiment.

MIT’s iLab is another online lab architecture using
SOAP, as the “Online Experiment Systems: Other
Architectures” sidebar describes. Its broker uses SOAP
messages to access both online labs and users. Our online
lab management system plays the broker role of inter-
acting with resource services, but we don’t use an addi-

tional SOAP client-server tier for the user. Our arrange-
ment preserves the existing Web-based GUI that many
online labs already have. Most importantly, this allows a
lightweight client that doesn’t need extra software to
process SOAP.

WRAPPING INSTRUMENT
FUNCTIONS AS WEB SERVICES

A WSDL file contains a Web service’s operations and
the arguments for invoking operations. Our WSDL file
provides three types of information:

e input/output (I/O) parameters for operating the instru-
ment,

¢ information about rendering a GUI of the instrument
panels, and

e metadata about the instrument.

Instrument 1/0 features

Instrument I/O is a well-studied domain with established
industrial standards. Most commercial products follow the
Virtual Instrument System Architecture (VISA) and
Interchangeable Virtual Instruments (IVI) standards,
which enable instrument interoperability by using com-
mon APIs for the instruments (http://adn.tm.agilent.
com/index.cgi? CONTENT _ID=239). Thus, using an I/O
library based on these standards, we can control an instru-
ment by sending an ASCII string to it and reading ASCII
strings back from it.

IVIis an extension of VISA. Rather than sending the
command as VISA does, IVI operates an instrument by
referencing its properties. The following code uses VISA
and IVI to set the frequency of an Agilent 33220A wave-
form generator to 2,500.0 Hz. IVI operates the frequency
property directly, while VISA sends a string whose seman-
tics define the operation.

//using IVI
Fgen->Output->Frequency = 2500.0;
//using VISA

Fgen->WriteString (“FREQuency 25007);

IVI divides instruments into eight classes. Each class has
basic properties that all instruments in the class share and
extension properties unique to an individual instrument.
IVI also includes more measurement functions than VISA,
such as simulation, multithread safety, range checking,and
state caching. (State caching means keeping track of cur-
rent instrument settings to avoid sending redundant com-
mands to the instrument. This sense of “state” differs from
that in stateful Web services—discussed later in this arti-
cle—which distinguish among different clients and invo-
cations.) On the other hand, I'VI drivers have a longer
learning curve, and they execute more slowly because they

Web Service Glossary

» UDDI: Universal Description, Discovery, and
Integration (http://uddi.org/pubs/uddi_v3.htm)

» URI: Uniform Resource Identifier

>» SOAP: Simple Object Access Protocol (http://
www.w3.org/TR/soap12-partl)

> WSDL: Web Services Description Language
(http:/lwww.w3.org/TR/wsdl)

>» XML: Extensible Markup Language

don’t invoke the instruments directly. An IVI driver con-
sists of a class driver and an instrument-specific driver. But
neither provides an appropriate route for interchanging
two instruments from different classes that are capable of
making the same measurement.

Wrapping instrument operations
based on VISA and IVI standards

Because both VISA and IVI send ASCII strings to con-
trol the instruments, the methodology of wrapping the
instrument services can be generic to any instrument. This
means all instruments can use the same Web services inter-
face. We simply define a writeString operation for sending
commands or data to the instrument. The argument of this
operation is always “string,” which is the same for any
instrument. Similarly, we define a readString operation for
getting status or data from the instrument. Figure 2 is the
snippet of WSDL for defining the writeString operation.

Let’s say we want to operate a waveform generator to
generate a sinusoid waveform. The set of control param-
eters for the sinusoid waveform contains instrument

Figure 2. Snippet of WSDL for
operating an instrument.

<?xml version = “1.0"” encoding = “UTF-8?>
<wsdl:definitions>

<l—define the response message—>

<!l—define the request message—>
<wsdl:message name="writeStringRequest”>
<wsdl:part name="in0" type="xsd:string"/>
</wsdl:message>
<!—define the operation—>
<wsdl:operation name="writeString”
parameterOrder="in0">
<wsdl:input message="intf:writeStringRequest”
name="writeStringRequest”/>

</wsdl:operation>

.<'/'\'/;/sdl:definitions>

March | April 2006 IT Pro 29

30

SERVICE-ORIENTED ARCHITECTURE

Figure 3. Principle for displaying
an instrument panel from its
XML description.

XML file (DMM_AGILENT_34401A_GUl.xml)

/ XSD file (DMM_GUI.xsd)
/
<xml> Validates <xsd>
<.> [<.>
</xml> </xsd>

TUses e JAXB Java architecture for XML binding

APl Java
‘ Agilent Technologies A =l
6 1/2 digits el
TAnaIyze 227 AR]
Generates | v=| wo | = |Grom &
Java servlet f|———7—» [EA=S EAaTS U= 2
/ / L2, 2. | cont) | rier 2

GUIBuilder JPanel > <table...>

JButton > <input type = "button">
JCheckBox > <input type = "checkbox"...>
JTextPane > <input type = "text"...>

JComboBox > <select...> <option>

Figure 4. XML snippet describing
the control panel of an Agilent
34401A, a digital multimeter.

<parentFrame parentFrameName= “Frame Container”>
<parentFramelayout. ... </parentFramelLayout>
</parentFrame>

<parentPanel parentPanelName="Parent Panel”>
<parentPanelLayout>GridBagLayout</parentPanelLayout>
<parentPanelDimension> ... </parentPanelDimension>
</parentPanel>

<childPanel childPanelName =
"ExternalParametersChildPanel”>

<childPanelLayout> ... </childPanelLayout>
<component className="jLabel”.

<componentName> ... </componentName>

</component>

;/.chiIdPaneI>

address, wave shape,impedance, frequency, amplitude, and
offset. To save the time of composing a separate SOAP mes-
sage and establishing network connection for each of these,
we combine multiple commands into one string and send
only one SOAP message. After the server receives the
string from the client, it parses the string according to the
delimiter (here we use a semicolon) and sends the com-
mand to the instrument. The following string combines mul-
tiple commands for the waveform generator:

IT Pro March | April 2006

“*RST;FUNCtion SINusoid;OUTPut:LOAD
50;FREQuency 2500;VOLTage
1.2;VOLTage:0FFSet 0.4;0UTPut ON”;

Using VISA, the server parses the
commands into this code:

Fgen->WriteString (“*RST”) ;
Fgen->WriteString (“FUNCtion SINusoid”);

Fgen->WriteString (“OUTPut ON”);

With IVI, the combined string is a
little different, and it yields these
commands:

Fgen->Utility->Reset(); // Reset
Fgen->Output->Function =
Agilent332200utputFunctionSinusoid;
Fgen->Output->Frequency = 2500.0;
Fgen->Output->State = VARIANT_ TRUE;

//on

We can also define a generic WSDL snippet for each IVI
instrument class, defining the operations for each property.
This makes instruments in the same class, with the same
extension properties, effectively interoperable.

DESIGNING INSTRUMENT WEB GUIS

Our next task is to display a remote instrument’s con-
trol panel graphically on a Web browser, so that the user
can operate the GUI to control the instrument. To do this,
we serialize the instrument panel as an XML file and
store it at the end of the remote instrument service
(“Model for a Distributed Telelaboratory Interface
Generator,” B. Fattouh and H. Saliah-Hassane, Proc. Int’l
Conf. Engineering Education and Research,Int’l Network
for Engineering Education and Research,2004). When a
user chooses this service, the online lab management sys-
tem downloads this file from the service. The system’s
Web server can then parse the file and render it to the
client.

Figure 3 shows the process in detail. The XML schema
for a digital multimeter is DMM_GUI.xsd, which is part
of the online lab management system’s knowledge. The
online lab management system uses this schema to vali-
date the file DMM_Agilent_34401A_GUI.xml, which
defines the GUI for the Agilent 34401 A multimeter,down-
loaded from the remote service. Then the online lab man-
agement system uses JAXB (an API and tools that
automate mapping between XML documents and Java
objects) to parse DMM_Agilent_34401A_GUI.xml and
map it to Java servlet objects. The Web service associated
with the online lab management system displays the panel

objects on an HTML page. The box at the bot-
tom right of Figure 3 shows the GUI page
generated.

Figure 4 shows a snippet of the XML to cre-
ate the GUI for the Agilent 34401A digital
multimeter (“Design Instrumental Web
Services for Online Experiment Systems,”
Yuhong Yan and colleagues, Proc. World
Conf. Educational Multimedia, Hypermedia,
and Telecomm.(ED-MEDIA), AACE,2005).
ParentFrame, parentPanel, and childPanel
are container panel objects. A container
object can contain other panel objects, such
as labels and text boxes, and it includes a lay-
out that describes how to render the objects
it contains.

It’s a little more complex to show arbitrary
shapes such as waveforms. We have three
options: generating a jpeg image for the wave-
form, using applets (for Java), and using
activeX control (for Windows).

INTERFACES OF META
INFORMATION

The TEEE Learning Object Metadata
(LOM) standard, designed for creating online
classes, defines learning-object metadata such
as author, organization, and language (IEEE
1484 Learning Objects Metadata, IEEE, 1999;
http://www.ischool.washington.edu/sasutton/
IEEE1484.html). In an online lab, instruments
qualify as learning objects, and researchers
have extended the LOM standard for the

Anatomy of an

Online Experiment

Online Common Emitter Amplifier Experiment

The common emitter amplifier is one of the three basic transis-
tor amplifier configurations. In this experiment, the student inves-
tigates the principle of a basic NPN common emitter transistor
amplifier. The remote lab prepares the amplifier circuit and con-
nects it with a waveform generator for the input signal, a multi-
channel data-acquisition system for the observation points, and an
electricity power source. The students can access tutorial materials
and book time slots for this experiment via the online experiment
system.

At experiment time, the student controls the waveform genera-
tor to give different input signals to the circuit and observe the
measurement of the observation points. The experiment requires
the student to observe how the amplifier works with DC and AC
signals, measure the amplification magnitude, and measure the
input and output impedance of the amplifier. The student can save
data into files and use online tools to draw graphs.

Other tests can’t be as easily implemented using existing equip-
ment. For example, when students are present in the lab, they can
insert a test resistor in series with the signal input to the amplifier
and measure how much of the AC generator signal actually appears
at the input of the amplifier. But since the student can’t reconfig-
ure the circuit online, this test is not yet possible as an online exper-
iment. Many online experiments will require the design of special
equipment.

experimentation context (“XML Technologies to Design
Didactical Distributed Measurement Laboratories,” A.M.
Bagnasco, M. Chirico, and A.M. Scapolla, Proc. IEEE
Instrumentation and Measurement Tech. Conf. (IMTC),
IEEE, 2002). To operate an instrument, we add two
additional types of information: availability and quality
of service.

In WSDL, we define the operation getLOMMetaData
to download the information, and getAvailabilityInfo to
obtain availability information for booking the service;
Figure 5 shows the definition of these operations.

An instrument’s QoS information, accumulated from a
Web service’s history, consists of the successful connection
rate, response time, and customer’s rating. Users examine
all the information to select the most effective instruments
for an experiment. QoS can be an important selling point,
differentiating among services with similar functionality.

MANAGING STATEFUL INSTRUMENT
WEB SERVICES

The classic Web service is stateless, which means that
it doesn’t maintain states between different clients or

Figure 5. Operations for getting
metadata information in WSDL.

<!—define the operation—>

<wsdl:operation name = “getLOMMetaData”>
<wsdl: output name="getLOMDataResponse”>
</wsdloutput>

<!—define the operation—>

<wsdl:operation name = “getAvailabilitylnfo”>
<wsdl: output name= “getAvailabilityResponse”>
</wsdloutput>

<!—define the operation—>

<wsdl:operation name = “getQoSInfo”>
<wsdl: output name= “getQoSResponse” >
</wsdloutput>

</wsdl:operation>

different invocations. HT TP, the commonly used transport
protocol for Web services, is a stateless data-forwarding
mechanism. So a Web service guarantees neither packet
delivery to the destination nor the order of the arriving
packets. Thus, classic Web services are suitable for services

March | April 2006 IT Pro 31

32

SERVICE-ORIENTED ARCHITECTURE

Figure 6. Stateful service for
instrument resources.

B
A
/ Web 4
/ service |
> 4—5 A
Service R
esource
requester /management Online instrument

Figure 7. Different methods of sending

string data through SOAP.
2,500

ing the context of the states and how to pass the
context between requests. Grid services, such as
GT4.0 from the Globus alliance (www.globus.
org), use the “factory” pattern to generate an
instance of the service for each client, and each
client’s service instance manages stateful serv-
ice. This mechanism works well for a resource
that can accept multiple users—for example, a
computer that runs multiple processes. But meas-
urement instruments are single-user resources,
so the factory mechanism won’t work well in
our application.

Another possibility, the Web Service Resource
Framework (WSRF), relies on the resource itself
to manage states. To point to a stateful resource,
WSREF uses WS addressing, which it passes as the
context of a request between the client and server.
But our instruments are stateless, so this frame-
work also won’t work for our online lab.

Figure 6 diagrams the stateful service we’ve
designed for instrument resources. The client ID

2,000

1,500

—&—— String in XML
—— MIME attachment

Transporting time (ms)

and resource identifier (a URI) identify the state
b context. The process follows these steps:

1. The client sends the request to the Web
service. The request contains the client’s ID
to identify the session.

2. The Web service returns the resource’s
identifier.

1,000 . 3. The client always contacts the service using
¢ MIME attachment, zipped the resource identifier.
DIME attachment, zipped 4. The instrument conducts the online
500 " B E— experiment.
1% ¢ 5. The instrument returns the results to the Web
f#(service.
% 50 100 150 200 6. The Web service records the results appro-

No. of data points per message (thousands)

providing nondynamic information. Managing Web serv-
ices for instruments takes additional effort.

An instrument itself does not record client information
or invocations. Indeed, an instrument is reactive: It receives
commands, executes them accordingly, and returns the
results. (If we say an instrument has “states,” these are the
parameters of its working mode, which have nothing to do
with states in the context of Web services.)

An instrument service must be stateful for two reasons.
First, we must have a way to record a user’s operations for
accounting and payment purposes and to control how the
user can use this instrument. Second, we need to transport
results among several resources asynchronously.

Stateful services always rely on a database or another
persistency mechanism to maintain states and recover
from failures. But different schemas are available for defin-

IT Pro March | April 2006

priately and returns the results to the client.

BENCHMARKING LATENCY

AND OPTIMIZING SOAP EFFICIENCY

The downside of Web services’ high interoperability is
slower performance than other middleware because of the
additional transport layers for the SOAP messages. The
delay involves marshalling the SOAP message, binding it
to the HTTP protocol at the request side, transportation
time over the network, and decoding time on the service
side. To study and improve latency, we first designed a
benchmark test to determine the time to transport a serv-
ice request from the requester to the provider. We con-
ducted this test with the instrument Web service and the
online experiment system on the same host, so this test
doesn’t consider Internet delay.

We used ASCII strings to encode several floating-point
values in a SOAP message. We assume each floating-point
value has 16 digits to provide adequate precision. The size

of the strings is directly proportional to the num-
ber of digits. We measured the time starting from
the call of the service and ending as the request
reaches the service endpoint. The blue line in Figure
7 shows the relation of transportation time to the
number of data points in the message.

The most straightforward optimization method
is to reduce the SOAP message size. By sending
data as a SOAP attachment, we reduce the message
size and save time on XML encoding. The overhead
of this method is time processing the attachment.
Our first test used a Multipurpose Internet Mail
Extensions (MIME) attachment. As we see in
Figure 7, when the data volume is small, it is faster
to transport the XML message than to use an
attachment. This is because for small volumes of
data, XML encoding takes less time than attach-
ment processing. However, with a large volume of
data, the attachment provides the faster method,
because attachment processing time doesn’t
increase much as the volume of data increases,
whereas XML encoding time increases in propor-
tion to the volume of data.

We can further reduce SOAP transportation
time by compressing the payload. For our second
test, we compressed the data into the zip format,
making the payload size 40 to 50 percent of its
original size, and sent it as a MIME attachment
(yellow line in Figure 7). The slope of the yellow
line is about half that of the red one (uncom-
pressed MIME attachment), but its height on the
vertical axis is basically the same. This means that
ZIP compression saved time at transportation
time, but other costs (such as preparing the attach-
ment and establishing the connection) remained
the same.

Direct Internet Message Encapsulation (DIME),
another SOAP attachment format, handles SOAP
messages with attachments quickly and efficiently
by using chunking and a specially designed record
header. DIME is simpler and provides more efficient mes-
sage encapsulation than MIME, although MIME provides
greater flexibility. The green line in Figure 7 shows the
results of our test using DIME attachments with zip com-
pression. It has the same slope as the yellow line, reflect-
ing the size of the payload transported. The basic offset is
lower because DIME provides more efficient attachment
processing.

Our tests show that we can reduce transportation time
dramatically through optimization. The optimized delay
falls into the feasible range for the context of this applica-
tion when it must transport large amounts of data. Of
course, we designed our online experiment system for the
e-learning domain, so the tasks aren’t mission-critical, and
don’t require lightning-fast responses.

Finding a Lab Online

eMerge, http://www.emerge-project.net. According the
project proposal, eMerge “will involve the creation of
innovative solutions concerning the networking of part-
ner laboratories, server technologies, access control, secu-
rity, queuing, scalable user interfaces, and pedagogical
approaches.”

iLab, http://ilab.mit.edu/ServiceBroker6_0/home.aspx.
MIT’s remote laboratory gives access to equipment for
experiments in microelectronics, chemical engineering,
polymer crystallization, structural engineering, and signal
processing. From the iLab Web site: “The iLabs vision is
to share expensive equipment and educational materials
associated with lab experiments as broadly as possible
within higher education and beyond.”

Prolearn, http://www.prolearn-project.org. Another
European-based project, Prolearn includes contributions
from numerous universities worldwide. Virtual and remote
experiments are available in fields including probability
and statistics, chemistry, earthquake engineering, software
design, nanotechnology, and many others. For experiment
descriptions see http://prolearn-oe.org/bin/view/OE/
ExperimentDescriptions.

Telelabs Project, http://telerobot.mech.uwa.edu.au/
index.html. Run out of the University of Western
Australia’s School of Mechanical Engineering, Telelabs
offers UWA undergraduates online engineering experi-
ments; meanwhile, graduate students in the mechatronics
engineering degree program “learn mechatronics inte-
gration and system development techniques by develop-
ing and extending the Telelabs system to equipment across
the engineering faculty.”” The site’s Links page also main-

tains a list of remote laboratories worldwide.
y focusing more on data integration than process
B integration, our methodology solves several techni-
cal problems of integrating heterogeneous experi-
ment resources, using Web services. The next step of this
project will be to study how to describe the resources in
UDDI semantically and how to match the proper services
to specific experiment requirements. SOAP performance
remains an important issue as Web services evolve, and, as
this article goes to press, researchers are presenting addi-
tional methods for SOAP optimization. ll

Yuhong Yan is a research officer in the Institute for Infor-
mation Technology at Canada’s National Research Coun-
cil and an adjunct professor on the faculty of computer

March | April 2006 IT Pro 33

34

SERVICE-ORIENTED ARCHITECTURE

science at the University of New Brunswick. Contact her at
yuhong.yan@nrc.gc.ca.

Yong Liang was a master’s student at the University of New
Brunswick. When this work was done, he was a visiting
worker in the Institute for Information Technology at
Canada’s National Research Council. Contact him at
yong.liang@unb.ca.

Xinge Du is a master’s student at the University of New
Brunswick and was a visiting worker in the Institute for
Information Technology at Canada’s National Research
Council when this work was done. Contact him at
xinge.du@unb.ca.

IT Pro March | April 2006

Hamadou Saliah-Hassane is a professor of informatics at
Université du Québec a Montréal, Télé-université, department
of Science and Technology. He is the research team leader on
Laboratories at Distance for Education and Research (Lab@
DER). Contact him at saliah@teluq.ugam.ca.

Ali Ghorbani is a professor on the faculty of computer sci-
ence at the University of New Brunswick. Contact him at
ghorbani@unb.ca.

For further information on this or any other computing
topic, visit our Digital Library at http://computer.org/
publications/dlib.

Together
with the IEEE

Computer Society,

you do.

Join a standards working group at
www.computer.org/standards/

