
Interactive Workflows in a Virtual Laboratory for e-Bioscience: the
SigWin-Detector Tool for Gene Expression Analysis

Márcia A. Inda
�
, Adam S. Z. Belloum

�
, Marco Roos

�
,

Dmitry Vasunin
�
, Cees de Laat

�
, L. O. Hertzberger

�
, and Timo M. Breit

�
(1) Integrative Bioinformatics Unit, (2) System Network and Engineering Group,

and (3) Computer Architecture, and Programming Laboratory Group
Faculty of Science, University of Amsterdam, the Netherlands�
inda, adam, roos, dVasunin, deLaat, bob, breit � @science.uva.nl

Abstract

Explorative research is a vital part of biological sci-
ences. Biologists frequently have to examine and compare
multiple (large) sets of biological data in an interactive and
explorative manner. Exploring alternative ways of exam-
ining the data and managing the necessary resources often
require substantial (manual) effort and time.

In this paper, we present a concrete example of how
VLAM, a grid-based workflow management system, can en-
hance experimentation. We discuss in detail the process of
developing the SigWin-detector, an application in the do-
main of bioinformatics. We show that SigWin-detector can
promptly identify regions of increased gene expression in
transcriptome maps and periodicity in weather data. We
also show that the workflow can be extended or partially
modified. The individual modules can also be used to com-
pose different experiments. SigWin-detector fulfills the re-
quirements of interactive and explorative experimentation.

1. Introduction

In the course of their research, biologists frequently have
to examine and compare multiple (large) sets of biological
data. This is the case when, for example, they need to ana-
lyze the replicates of a microarray experiment, or compare
the data from various tissues of an organism. Ideally, biol-
ogists should be able to explore various analysis strategies
interactively. Comparing datasets and trying alternative de-
signs and parameter settings whilst continually evaluating
results is highly typical of biological research. However,
each change of design often requires substantial (manual)
effort and the execution of the computations can take a long
time. This is a significant bottleneck for a science for which

empirical analysis is essential to study its highly complex
problems.

A molecular biology researcher needs to manage diverse
resources such as genome-sequence related data reposi-
tories from web applications (e.g. the UCSC genome
browser1, DNA sequencing equipment, gene expression
measurement instruments, and the related data analysis
tools. The effective utilization and coordination of such a
variety of resources, taken together with the need for sup-
port for an explorative and interactive research method, re-
quire expertise that is beyond the specialized knowledge
of any single scientific field, whether it be biology or any
other experimental science. Hence, it is beneficial to adopt
an e-Science approach that provides automated support to
researchers throughout the whole life cycle of their experi-
ments.

The ideal e-Science framework should deal with the ac-
cessibility and management of the required resources, as
well as with the creation of a working computational en-
vironment containing the necessary analysis tools. Such a
an environment is called a virtual laboratory (VL), and can
be described as the set of (virtual) facilities with all the nec-
essary infrastructure (both hardware and software) needed
to carry out scientific dry-lab experiments and support wet-
lab experiments. All this, integrated in a comprehensive and
accessible computational environment (see, e.g., [14]).

While the underlying infrastructure for a VL can be pro-
vided by grids, the management framework can be provided
by workflow management systems (WMSs). Grids supply
affordable high performance computing resources and large
data storage capability, therefore promising to become the
global cyber-infrastructure for the next generation of e-
Science applications. Scientific communities utilize grids
to share, manage and process large data sets. WMSs can be
used to design scientific workflows that automate scientific

1http://genome.ucsc.edu

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

processes based on data dependencies and their control, as
well as to abstract the usage of the required underlying in-
frastructure to help scientists focus on their own research
[1, 12, 2]

In this paper, we discuss how developing workflows sup-
ported by a WMS can improve and even open new ways of
carrying out interactive and explorative experimentation in
a VL. As an example we discuss in detail the process of de-
veloping SigWin-detector, an application in the domain of
bioinformatics.

2. Workflow Management Systems in e-Science

In order to make resources accessible to the related e-
Science communities not only from within the physical lo-
cation but also through the web, the VL-e program has
adopted a (Web) Service Oriented Architecture in combi-
nation with WMSs.

Examples of such WMSs for e-Science applications
specifically aimed at grids can be found in [10, 8, 7, 19, 2].
The aim of these WMSs is to abstract the details of com-
plexity in the underlying infrastructure from the end user.
The users of a WMS need only be concerned with tasks
that are essential to achieve their scientific goals, e.g., defin-
ing original data sets, defining processes that must be per-
formed and the order in which these processes should be
executed.

To obtain insight on how workflow support is provided
by the existing systems, a survey of existing WMSs has
been conducted. Several well-known systems that we re-
viewed include: GridNexus [4], ICENI [8], Kepler [1], Pe-
gasus [5], Taverna [12]. The survey focused on three main
issues: the experiment design stage, specific requirements
for the workflow execution stage (job farming and param-
eter sweep), and result dissemination. A detailed report,
including a series of comparison tables, can be obtained at
the gvlam web site2.

Most of the surveyed systems are under active develop-
ment and new features are frequently added. All systems
evaluated have strong and weak points. For instance: Tav-
erna [12] is a powerful tool to use with Web services and
provides direct access to a wide range of bioinformatics ser-
vices; Kepler [1] is designed to work on standalone com-
puters and has a large library of generic processing compo-
nents that can speed up the design of the application work-
flows; and Pegasus [5] has an advanced provenance mech-
anism. However, the process of creating workflow compo-
nents in most WMSs is similar. Most systems offer means
of wrapping the user’s applications into modules that can
be controlled and linked to each other by the WMS in ques-
tion. The complexity of developing new application spe-

2http://staff.science.uva.nl/˜gvlam/doc/P2/
SWMSRecommendationReport.pdf

cific workflow components is almost the same, regardless
of which WMS is used.

VLAM offers a good starting point for our application.
Firstly, VLAM has native support for developing applica-
tion components in C and C++, as well as modules written
in Java and Python, and it provides a wrapper for legacy bi-
nary applications. Secondly, VLAM provides easy access
to grid computational resources, and offers a unique feature
that allows streaming data between workflow components
running on geographically distributed computing resources
in an efficient and transparent way. Thirdly, VLAM offers
the possibility to modify some of the application parameters
at run time without having to restart the execution. This is
especially interesting if a calibration phase is needed when
some of the application parameters are not known before-
hand and need to be tuned.

3. The VLAM Workflow Framework

The VLAM workflow system has been developed in the
context of the VLAM-G project by the UvA. The VLAM
framework tries to cover the whole life cycle of experimen-
tal scientific applications starting from the design phase to
the dissemination and sharing of knowledge and of the out-
come among a geographically distributed scientific commu-
nity. The user interface of VLAM is composed of a two-
level abstraction workflow, namely: the Process Flow Tem-
plate (PFT) and the concrete workflow composer which rep-
resents the actual execution of the application on the grid
resources [2] (Figure 1).

Figure 1. Architecture of the VLAM frame-
work.

Modules form the basic construction elements of the
VLAM framework. Users build their experiment connect-
ing the output of a module to the input(s) of other modules.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

A VLAM module consists of a processing part and a ser-
vice part. The processing part is the application code, it
implements the program logic. The service part provides
basic facilities for transferring data between modules and
supports the run-time control interface of these modules.

The VLAM run-time system (RTS) component is respon-
sible for streaming of the data from an output port of a mod-
ule to an input port of another module running on a different
computing node. The RTS is a data-driven workflow en-
gine designed to provide a transparent and efficient execu-
tion of software components on geographically distributed
and Grid enabled computational resources. The RTS as-
sumes that all available computing resources have a grid
middleware installed (Globus) and have inbound and out-
bound communications, which allows the creation of data
streams between workflow processes located on geographi-
cally distributed grid resources.

Module core
vlmain()

vlport library

CORBA
connection

handler

input
ports

Utillities
(GASS, GridFTP)

VL-e Module

output
ports

Figure 2. Port library component architec-
ture.

The RTS provides for the application developers a simple
API for the creation of I/O ports, a mechanism to interact at
run time with the created VLAM modules, and other utility
functions (Figure 2). It instantiates, connects, and executes
all modules composing the workflow. The input and out-
put ports have a simple interface compatible with standard
C++ streams. The VLAM module developers have a simple
access to all Grid Access Secondary Storage or GASS data
sources using Grid-FTP, FTP, HTTP and HTTPS protocol.

The RTS provides an interface to control predefined pa-
rameters of VLAM modules at run-time. This feature al-
lows end-users to interact directly with every process com-
posing the application workflow without having to restart
or stop the whole workflow. A parameter in VLAM con-
text is a named entity with a value that can be changed from
the modules code as well as from outside, i.e. the VLAM
workflow composer (Figure 1). The developer of a module
associates a parameter with any arbitrary metric he wants
to control. Parameters can be used to monitor the state of a
module or to set its state during or before execution. They
also can be used to organize a shared blackboard for other
subsystems of VLAM.

We are building the SigWin-detector workflow in the
VLAM environment to evaluate the capability of a work-
flow approach, and of the VLAM WMS in particular, to
meet the needs of explorative analysis of biological data in
a grid environment. In the following section we introduce
SigWin-detector. We start by summarizing the required bi-
ological background and then briefly describing the compu-
tational method.

4. SigWin-Detector: a Bioinformatics Use Case

Loosely speaking, a gene is a section of DNA that con-
tains information on how to produce a certain protein. For
this to happen, a gene must first be transcribed into its com-
plementary RNA, which is subsequently translated into the
pertinent protein. The gene in question is said to be ex-
pressed when translation occurs. Genes are neighboring el-
ements on linear DNA molecules (the chromosomes) and
this natural sequential arrangement can play an important
role in the regulation of gene expression (see, e.g., [13] and
references therein). The importance of chromosomal loca-
tion is well established in molecular biology, exemplified
by the popularity of genome browsers (e.g. [17]) that map
many types of information (including genes and their activ-
ity or transcription levels) to chromosomal location. Chro-
mosomal location is also used as the basis for a system for
integration of distributed genome databases supported by
the major providers of biological data [6].

The investigation of profiles of, for instance, gene tran-
scription along the chromosomes (transcriptome maps) can
identify new phenomena that can improve our understand-
ing of genome function (e.g., [16, 18]). However, in many
cases a clear structure is not readily apparent in these pro-
files. For instance, autocorrelation of directly neighbor-
ing genes in the transcription profiles in [18] is very low.
Substantial statistical processing is necessary to identify
important, but less apparent structures such as regions of
increased (median) gene expression (RIDGEs) in humans
[18], or similar structures in other species (e.g., [3, 15]).

The program originally used to identify RIDGEs in tran-
scriptome maps is called Ridgeogrammer3. It takes hours
to run in a typical desktop computer, lacking the speed
and versatility needed for interactive and explorative anal-
ysis. Therefore, we developed SigWin-detector workflow,
a generalized and improved version of the original program
that can be operated interactively in a VL. SigWin-detector
takes as input an ordered sequence (a transcriptome map),
computes sliding window medians, and identifies as signifi-
cant windows (RIDGEs) the sliding windows with a median
value above a certain false discovery rate (FDR) threshold,
c.f., [9] (see Figure 3). The term significant window is a

3http://bussemaker.bio.columbia.edu/software/
Ridgeogrammer/

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Input: Transcriptome
map

Slide Window
Median (SWM)

Slide Window Median
Probability (SWMP)

Histogram of
frequencies (HF)

Histogram of
probabilities (HP)

False Discovery
Rate (FDR)

Output:
List of Ridges

Repeat
for each
window

size

Figure 3. SigWin-detector basic scheme.

generalization of the concept of RIDGE. In this general con-
text, one can analyze different types of genomic profiles or
even unrelated sequences such as time series of the temper-
ature.

Our workflow implementation uses a new direct method
for computing the null hypothesis distribution needed to
compute the FDR thresholds. This direct method is exact
(apart from rounding errors) and only needs to compute
sliding medians of the input data once, while the Monte
Carlo method previously used is approximate and needs to
repeatedly compute sliding window medians of permuted
input data (approximately 5000 permutations for a sequence
of size 25000). This improvement permits a fast identifica-
tion of the significant windows (minutes instead of hours),
opening the doors to an application that can fulfill our ex-
pectations of an interactive and explorative analysis tool for
genomic sequences.

5. The SigWin-Detector Workflow

The SigWin-detector basic workflow (Figure 4) consists
of the following VLAM modules:

1. ColumnReader module: reads the input sequence.

2. Rank module: ranks it.

3. SWMedian module: computes sliding window medi-
ans.

4. Sample2Freq module: generates a frequency count
from the sliding window median data.

5. SWMedianProb module: generates a theoretical
probability density for the sliding window median data
from the ranked sequence.

1) ColumnReader module

2) Rank module

3) SWMedian module

4) Sample2Freq module

5) SWMedianProb module

6) FDRThreshold module

7) SigWin module

8) GnuPlot module

Figure 4. SigWin-Detector basic workflow us-
ing the VLAM workflow composer.

6. FDRThreshold module: applies a false discovery
rate (FDR) procedure that compares the obtained fre-
quency count with the theoretical probability to obtain
FDR thresholds for each window size.

7. SigWindow module: selects windows above the FDR
threshold. And

8. GnuPlot module: displays the results graphically.

Each module performs specific tasks that can be fine-
tuned by using the module’s parameters. The functionality
of each module (including the task to be executed, parame-
ters, and I/O ports) was chosen with the intention of achiev-
ing a good balance between functionality and efficiency:

1. Functionality: Each module should do a specific and
meaningful task, so that the steps needed to execute
the workflow can be easily identified and understood
in the larger context of the workflow.

2. Efficiency: The modules should be designed to mini-
mize data communication and task replication by dif-
ferent modules in the same workflow.

To do this, we first determined the various steps needed
to complete the desired task (i.e., identify significant win-
dows, see Figure 3), thus emphasizing readability. Then
we revised the original scheme taking efficiency issues into
account. For example, to compute the sliding window me-
dians it is necessary to compute the rank of each element of
the input sequence; this implies sorting it. To compute the
theoretical probability density of the sliding window medi-
ans it is also necessary to sort the input sequence. There-
fore, we added a ranking module to our workflow in order
to avoid sorting the same input sequence twice. We also
merged steps SWMP and HP of the original scheme (c.f.,

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Figure 5. Description of the ports and param-
eters of the Rank module.

Figure 3) into module SWMedianProb of the final work-
flow, avoiding unnecessary data transfer.

The I/O ports and parameters were also defined taking
efficiency reasons into account. For example, the Rank
module (Figure 5) has three I/O ports: (A) one for the rank
structure (a data structure that can access the input sequence
in the original order or in the sorted order), required by the
SWMedian module; (B) one for the sorted sequence re-
quired by the SWMedianProb module; and (C) one for the
sorted sequence without duplicates, required by the Sam-
ple2Freq and FDRThreshold modules. Each port is asso-
ciated to a Boolean parameter that controls its output. If any
of these parameters is set to false, then the steps necessary
to compute the output of the corresponding port will not be
performed. This avoids unnecessary computation and com-
munication steps.

The SWMedian module has two output ports, one for
the parameters defining the sliding window data structure
(sequence size, minimum window size, window size step,
and number of window sizes) and one for the sliding win-
dow data (the actual values). This is done because some
modules need only the parameters, while others need only
the data.

Parameters can also be used to fine tune the workflow.
For example, if the input sequence is known to be a se-
quence of integers, one can choose the input data type to
be integer, saving both memory space and execution time.

The basic workflow can be altered by substituting, delet-
ing, or adding modules. For example, if we do not want
graphical display, the graphics module can be dropped (this

Figure 6. SigWin-detector workflow adapted
for displaying significant windows per sub-
sequence. The new modules are: (A)
Read2Columns, (B) SeqSplitter, (C) SWSplit-
ter, and (D) SubSigWindow.

is useful for batch processing). Also, we can modify the
way the output is displayed by adding (and replacing) mod-
ules that split the input DNA sequence and display the
RIDGEs (significant windows) per chromosome instead of
for the complete DNA sequence. Figure 6 shows the mod-
ified workflow, where the ColumnReader module was re-
placed by the Read2Columns module, which reads two
columns of the input file (the first specifying the chromo-
some, and the second specifying the expression value of
each gene). The new modules SeqSplitter and SWSplit-
ter carry out the processes of splitting the sliding window
structure into a sequence of sub-structures, each containing
data corresponding to a chromosome. The old SigWindow
module is replaced by the new SubSigWindow module that
can handle multiple sliding window structures.

Converting an existing application into a VLAM mod-
ule is straightforward. It requires minor changes to the
original code and no knowledge of grid middleware is
needed. For C++ applications, a module is represented by
a C++ class that inherits from VL::VLApplication. The
VL::VLApplication class provides methods to create an in-
put or an output port. It also provides a method for getting
the value of a parameter from the user interface. For de-
tails we refer the reader to the VLAM user guide4. It is also
possible to wrap a stand alone application using the legacy
application wrapper (lawrapper). In this case, we only need
to provide a configuration file containing the information
lawrapper needs: the number and the type of input/output
ports; and the command that have to be executed. The mod-
ule GnuPlot was wrapped this way.

4http://staff.science.uva.nl/˜gvlam/pub/
gvlam-dist/stable-1.4/UserGuide.pdf

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

6. Using the Workflow

Once a workflow is composed, we can run it or save
it for later use. We tested our basic workflow and some
alternative ones in a grid cluster composed of geographi-
cally distributed computational nodes. For this experiment
we used the Distributed ASCI Supercomputer 2 (DAS-2)
(www.cs.vu.nl/das2). Figure 7 shows a typical snapshot of
an interactive section. The figure shows a graphical output
of the RIDGEs (significant windows) encountered in the hu-
man transcriptome map compiled by Versteeg and cowork-
ers [18]. Each triangular graph (ridgeogram) corresponds
to a chromosome. Each row in a graph represents a window
size (ranging from 1 to � , the size of the input sequence).
Each column represents a sliding window number (ranging
from ���
	 to ������
	 , where � is the window size), hence
the triangular form. Each RIDGE is identified by a point in
the graph, and the colors represent the actual sliding win-
dow median expression value. Our results agree with the
results of Versteeg et al. [18].

Figure 7. Graphical output of the modified
SigWin-detector workflow taking as input the
human transcriptome map compiled in [18].
The VLAM WMS distributes the workflow
on grid-enabled resources and redirects any
graphical output generated to the default
user screen.

Table 6 presents some preliminary performance results.
In Table 6a the step size is kept constant and in Table 6b it
grows with � .

Table 1. Timing results for running SigWin-
detector basic workflow.

a) step size = 	 b) step size = �������
���
� time (s) � time (s)
���
� 	�� 	
�
��� ���
�
�
� 	
	 	����
��� �����
���
�
� ��� �����
��� ��	��
	
�
�
� ��� �
���
��� ��	��
�
�
�
� ����	 �����
�
��� ��	��
�����
�
� ��	
� ��	
�
�
��� ���
�

Being able to choose the parameters for the sliding win-
dow structure can be useful when doing explorative data
analysis. In the beginning one could set the maximum win-
dow size range with a large step size to get an overview
of the distribution of significant windows. At a later stage
a more detailed picture of the interesting parts can be ob-
tained by reducing the window size range and choosing a
small step size.

SigWin-detector has a wider range of application. Fig-
ure 8 shows SigWin-detector being applied to a time se-
ries of temperature in Amsterdam. In this case a significant
window corresponds to a warmer than median period. Note
that if the window size is larger than one year, the signifi-
cant window pattern is reversed, forming the checkerboard
pattern characteristic of periodical sequences. This happens
because, if the window size is larger than the period (a year),
a window centered in the winter will have more warm than
cold days and be marked as significant. Conversely, a win-
dow centered in the summer will have more cold than warm
days and will not be marked.

7. Conclusions And Future Work

Biologists and the experimental scientific community as
a whole are in great need of methods and tools to enable
explorative and interactive research. They also need ways
to coordinate the resources they utilize effectively. Virtual
Laboratories (VL) have emerged as part of an e-Science ap-
proach aimed at solving these problems.

A VL should provide the necessary infrastructure needed
to carry out scientific experiments, as well as a working
computational environment containing the necessary anal-
ysis tools. While the underlying infrastructure for a VL
is provided by grids, the management framework is pro-
vided by workflow management systems (WMSs). In this
paper, we presented a concrete example of how WMSs can
create an environment where biologists can perform their
(computational) experiments on the grid, without having to
deal with the complexities of the underling grid middle-

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Figure 8. Temperatures in Amsterdam. The
significant window regions correspond to the
warmer months of the year.

ware, thus allowing them to focus only on the biological
aspects of their experiments.

We have developed SigWin-detector, a publicly available
interactive workflow that identifies significant windows in a
given sequence of values. It can be used to analyze tran-
scriptome maps and other types of genomic profile. In this
way, we used SigWin-detector to identify regions of in-
creased gene expression in the human transcriptome map
compiled by Versteeg and coworkers [18]. Our results agree
with their results. However, SigWin-detector has a wider
range of application and it can be used with any ordered
sequence. As an example, we tested our workflow using
a time series of temperature in Amsterdam. The result-
ing checkerboard pattern of significant windows clearly re-
vealed the periodicity of the data, identifying the periods of
temperature higher than the median (i.e., summers).

The SigWin-detector workflow was implemented using
the VLAM workflow management system. This implemen-
tation takes advantage of some of the features of the VLAM
workflow namely: (a) the interactive creation and execu-
tion of workflows in a grid environment; (b) the automatic
redirection of the graphical output to the end-user default
screen; (c) the possibility to adapt the workflow to meet the
user’s specific needs; (d) the ability to run an experiment in
batch mode by calling directly the run time system from a
script.

Furthermore, the modular design discloses the struc-
ture of an experiment to biologists in a more testable way
than through written publications and poorly reproducible
scripts. It facilitates optimization of parts of the workflow
and enables experimentation with variations of the original

design. Also, the workflow itself can be used as a ’module’
in more elaborate experiments.

At the moment we are running our workflow using dif-
ferent kinds of input data, including DNA sequence profiles,
microarray data, and weather-related data. We also intend to
run it using different types of fabricated data to create a col-
lection of patterns so that we can identify such signatures
when they appear in an experimental input sequence. We
are also investigating how additional background knowl-
edge about the data can be automatically incorporated in the
system [11]. This information will be needed for the inter-
pretation of increasingly complex experiments made possi-
ble by VLs.

The VLAM WMS is currently being extended with new
features which will improve both the composition and exe-
cution of the application workflows. The VLAM RTS will
be implemented as a WSRF-compliant web service allow-
ing end-users to connect from various locations to follow
the execution of their workflow. Another new feature is
to replace the current centralized information systems to
keep track of the VLAM module’s descriptions and char-
acteristics. In the new version a discovery system based on
peer-to-peer network will be added. This new component
will provide up-to-date information about available VLAM
modules and resources and can be used by the resource
manager in the optimization of the schedules. Another im-
portant feature we are currently developing is the interop-
erability with other WMSs, the objective being to allow a
user to develop his application workflow using components
which have been developed in different WMSs. A meta-
workflow engine, which we call WorkflowBus, will coordi-
nate the execution of the used engines.

Acknowledgments We would like to thank dr. Marcel
van Batenburg for fruitful discussions and the bioinformat-
ics group of dr. Antoine van Kampen for making the human
transcriptome map data available to us.

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part of this
project is supported by a BSIK grant from the Dutch Min-
istry of Education, Culture and Science (OC W) and is part
of the ICT innovation program of the Ministry of Economic
Affairs (EZ).

This work was part of the BioRange program of the
Netherlands Bioinformatics Centre (NBIC), which is sup-
ported by a BSIK grant through the Netherlands Genomics
Initiative (NGI).

References

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher,
and S. Mock. Kepler: An extensible system for design and
execution of scientific workflows. In SSDBM, pages 423–
424, 2004.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

[2] A. Belloum, D. Groep, L. Hertzberger, V. Korkhov, C. T.
de Laat, and D. Vasunin. Vlam-g: A grid-based virtual lab-
oratory. Future Generation Computer System, 19(2):209–
217, 2003.

[3] A. M. Boutanaev, A. I. Kalmykova, Y. Y. Shevelyov, and
D. I. Nurminsky. Large clusters of co-expressed genes in
the Drosophila genome. Nature, 420(6916):666–669, 2002.

[4] J. L. Brown, C. S. Ferner, T. C. Hudson, A. E. Stapleton,
R. J. Vetter, T. Carland, A. Martin, J. Martin, A. Rawls, W. J.
Shipman, and M. Wood. Gridnexus: A grid services scien-
tific workflow system. The International Journal of Com-
puter and Information Science (IJCIS), 6(2), 2005.

[5] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus: Map-
ping scientific workflows onto the grid. In European Across
Grids Conference, pages 11–20, 2004.

[6] R. D. Dowell, R. M. Jokerst, A. Day, S. R. Eddy, and
L. Stein. The distributed annotation system. BMC Bioin-
formatics, 2:7, 2001.

[7] R. Duan, T. Fahringer, R. Prodan, J. Qin, A. Villazon, and
M. Wieczorek. Real world workflow applications in the
askalon grid environment. In European Grid Conference
(EGC 2005), Lecture Notes in Computer Science. Springer
Verlag, February 2005.

[8] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Dar-
lington. Iceni: An open grid service architecture imple-
mented with Jini. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, pages
1–10, Los Alamitos, CA, USA, 2002. IEEE Computer Soci-
ety Press.

[9] Y. Hochberg and Y. Benjamini. More powerful procedures
for multiple significance testing. Stat. Med., 9(7):811–8,
1990.

[10] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Tri-
ana: A Graphical Web Service Composition and Execution
Toolkit. In Proceedings of the IEEE International Con-
ference on Web Services (ICWS’04), pages 514–524. IEEE
Computer Society, 2004.

[11] M. S. Marshall, L. Post, M. Roos, and T. M. Breit. Using
semantic web tools to integrate experimental measurement
data on our own terms. In submitted to the International
Workshop on Knowledge Systems in Bioinformatics (KSin-
BIT’06), 2006.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformat-
ics, 20(17):3045–3054, 2004.

[13] B. Oliver, M. Parisi, and D. Clark. Gene expression neigh-
borhoods. J Biol, 1(1):4, 2002.

[14] H. Rauwerda, M. Roos, L. Hertzberger, and T. Breit. The
promise of a virtual lab in drug discovery. Drug Discovery
Today, 11(5-6):228–236, 2006.

[15] P. J. Roy, J. M. Stuart, J. Lund, and S. K. Kim. Chromoso-
mal clustering of muscle-expressed genes in Caenorhabditis
Elegans. Nature, 418(6901):975–979, 2002.

[16] P. T. Spellman and G. M. Rubin. Evidence for large domains
of similarly expressed genes in the Drosophila genome. J.
Biol., 1(1):5, 2002.

[17] UCSC. Ucsc genome browser.
[18] R. Versteeg, B. D. van Schaik, M. F. van Batenburg,

M. Roos, R. Monajemi, H. Caron, H. J. Bussemaker, and
A. H. van Kampen. The human transcriptome map reveals
extremes in gene density, intron length, GC content, and
repeat pattern for domains of highly and weakly expressed
genes. Genome Research, 13(9):1998–2004, 2003.

[19] F. Xu, M. H. Eres, D. J. Baker, and S. J. Cox. Tools and
support for deploying applications on the grid. In IEEE SCC,
pages 281–287, 2004.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

