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Abstract

Virtual labs enable field specific experiments and
open them for collaborative and distributed usage. In
order to realize comprehensive laboratory set-ups pro-
viding a scientific broadness and user adaptivity, sev-
eral challenges regarding the integration of different
software technologies have to be solved. We propose
an eLearning framework consisting of a learner and a
course model; exercises within this framework are sup-
plemented by virtual laboratories and computer algebra
systems. We discuss the potentials of this setup on the
example of the laboratory VideoEasel and its interface
to Maple.

1. Introduction

Studies in physics, computer and engineering sci-
ences and other fields depend on a well funded math-
ematical education. Given that more and more of the
computational tasks are solved by the computer to-
day, the demand for understanding the concepts and
interpreting the results of the electronically performed
operations becomes a major task of the mathemati-
cal education. Teaching mathematics then, however,
means that diverse preknowledge and varying interests
of the different student groups and the varying learning
targets of the different fields of study have to be taken
into account. To support this broadness of audience
however, one has to go go beyond the first generation
of eLearning [6], which was often not much more than
computer assisted document management.

Intelligent technology, providing enough flexibility
to adapt to the requirements of the field and the learn-
ing process, is needed [7]. Therefore the concepts of
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‘Intelligent Assistants”, which have been recently de-
veloped in the field of Artificial Intelligence have to be
adapted to eLearning Systems and their components.
Intelligent Assistants thus can provide the necessary
adaptivity to usage patterns to support the learning or
research process actively, provided the course material
is structured properly. We will describe our proposition
for a suitable structure in section 2.

The potential of the proposed course structure is
that it allows the integration of components like virtual
laboratories — see section 5 — and computer algebra
systems (CAS). This provides students not only access
to experiments and tools to evaluate the outcome of
experiments, but also requires them to learn how to
handle these tools on realistic data. This allows us
to overcome one problem of traditional teaching meth-
ods: teacher-centered lessons provide the essential ba-
sic knowledge, but they hardly allow for a more active
approach, nor do they allow for individualized training
scenarios. Instead, we develop the handling of stan-
dard tools as they are used by working professional
engineers and scientists on data gained by the students
themselves as part of the course. Thus, we believe that
New Media and New Technologies present a turning
point in the educational system providing the base to
support the necessary chances [6].

We will introduce the concept of virtual laboratories
in section 5 on the example system VideoEasel, a lab-
oratory for statistical mechanics demonstrated in sec-
tion 6, and describe its interface to the Maple algebra
system in section 7.

2. A Course Model for eLearing

If we desire less-static, but user-adaptive eLearning
courses, then this requires that the available material

COMPUTER
SOCIETY

Proceedings of the Eighth IEEE International Symposium on Multimedia (ISM'06)
0-7695-2746-9/06 $20.00 © 2006 IEEE



within a course is well-structured and equipped with
all the necessary meta-data to drive electronic agent
programs, also called “Intelligent Assistants” in the fol-
lowing. Following the ideas of [12, 14, 9, 1, 2], it is the
purpose of these agents to detect usage patterns and
classify users in order to provide them with suggestions
as which learning material fits them best.

We therefore propose to structure this learning ma-
terial along the following three level hierarchy:

Courses on the Content Level:

A course is the coarsest unit we consider: the abstrac-
tion of a series of lectures held on a topic. Courses are
represented by directed graphs whose edges are Knowl-
edge Atoms of which each encodes one individual learn-
ing unit of a course. A learning unit in the field of
mathematics could be a theorem, or a definition, or a
motivation for a definition, a proof of a theorem and
so forth.

The vertices in this graph are dependencies between
learning units: a vertex is drawn from A to B if B is
a precondition for A, i.e. B must be taught in order
to make A understandable. Dependencies themselves
are classified into three groups: hard Requirements, re-
sulting from the ontology of mathematics. Recommen-
dations that are useful for didactic purposes, though
not imposed by the mathematical structure. And, fi-
nally, Suggestions an interested student might want to
follow, but which are neither required for didactical
nor for inner-mathematical reasons. A visualization of
the combined recommendation and requirement sub-
graph is called “HASSE Diagram” in educational sci-
ences [9, 1].

Exercises in the Training Level:

Knowledge atoms in the course network may also link
to training units in the exercise network; in general,
this is an n-to-m mapping as one knowledge atom might
refer to more than one exercise, and one exercise might
be useful for more than one knowledge atom. It is
this, and the following level we are currently explor-
ing within our virtual laboratory, and where our agent
programs work on.

The exercise layer is again a directed graph; how-
ever, its edges are now representing exercises: one ex-
ercise defines learning material a student might want
to use to repeat and train contents of the lecture. The
vertices in the exercise network encode dependencies of
the exercise units: a node A is linked to a node B if B is
an exercise for a sub-problem that is required to solve
A. Following these links, a student might be delegated
to simpler sub-problems of a harder assignment.

Similar to the above, the vertices are annotated by
the type of dependency, and we also find requirements
for mathematically dependent sub-problems, recom-

mendations and suggestions here. Requirements might
be satisfied by more than one node, i.e. there are also
cases were one out of several requirements is sufficient.
It is exactly this ambiguity that allows the deployment
of user agents: even though all exercises might provide
the same learning material to the professional reader,
they might be not equally suitable for all users. It is up
to an assistant program to make a suggestion about the
learning path through the exercise network that tries
to achieve a learning goal; however, it should be left to
the student to have the final say about the decision as
it is important to have a system that does not try to
patronize the learner by reacting in an incomprehensi-
ble way, and thus would rather cause more confusion
than it would be able to help. The exercises a student
picks over time define a path in the exercise network.
We will call this path the learning path of the individ-
ual user. The learning path has to be recorded until its
success is evaluated, let it be either by an independent
mandatory test within the system or by an (external)
exam, see section 3. The role of this evaluation is to
update weights for the decisions the tutoring system
performs in future sessions, individualized to the user
group, see sections 3 and 4 for details.

Asset Level:

One exercise consists of one or several assets on the as-
set level hierarchy of the network, and form here again
the nodes of a directed graph. An asset is one ele-
mentary operation that must be performed to solve
an exercise. Vertices in the asset graph define now
the reaction of the system on user input, e.g. per-
forming the wrong operation would redirect the user
to an asset that demonstrates why the proposed solu-
tion would not work, and hints could be given by the
system. At this level, the graph is a representation of
a Storyboard [5].

In our current implementation, the training and the
asset level make use of virtual laboratories, to be in-
troduced in section 5, to provide work items for the
student to follow. The Agent program operating on
the eLearning material for that interact with the lab-
oratory to recognize how the learner performs on the
stated problems. To this end, minimal programs called
“evaluators” can be linked into the laboratory user in-
terface at runtime, and collect data from the running
experiment. This data is then used to drive decisions
to be made within the storyboard at the asset level of
the course.

3. Learner Model

The role of the learner in the proposed system is
twofold: first, the learner is in the traditional role of
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the recipient of the learning material. But then, by
picking learning material and by participating in an
intermediate or final evaluation, the learner also eval-
uates the learning path and thus drives the learning
system towards providing more suitable learning ma-
terial for future users.

In order to construct such a learning system, we
need to make a couple of simplifications and assump-
tions on the learner: within our model, a learner is
part of a community, defined by a common language
and notation, and a common goal to be achieved by
the study. Using the metaphor that this community
is often identical to the visitors of one lecture, we call
this the audience the user is part of.

Note that even though the same course material has
to be taught to all above audiences, the notation, for-
mulation and exercises to be given will differ. However,
this does not necessarily impose that the exercise net-
work will look completely different, and that exercises
for one group will be unsuitable for the other. Specifi-
cally, the vertices on the content level dictated by the
ontology of the field are likely to be independent of the
audience.

Furthermore, we assume an objective method that
qualifies the learning success after following a learn-
ing path through the exercise graph. This evalua-
tion method should be, within all limitations we are
of course aware of, objective enough to update the
database of the tutoring system. This evaluation
therefore defines, a posteriori, the learning goal to be
achieved, and thus has to be defined by the teaching
university staff, e.g. the professor responsible for the
course.

We do not believe that a “credit system” that as-
signs credit points to users passing an exercise should
be used to drive and update the decisions of the learn-
ing system. First, to achieve a uniform learning goal
within an audience, all possible learning paths would
have to provide the same, or similar learning units,
which is hard to accomplish. Second, if an intelligent
self-learning tutoring system is trained by the learners,
then the optimal learning path is that providing the
maximal number of credits for minimal effort. Given
that a “lazy” learner would pick the easiest possible ex-
ercise providing a given number of credits, the system
would be trained to optimize the wrong goal, namely
best possible credits/lazyness ratio. This is different
from maximizing the learning success unless we can
really objectively assign credits to each exercise that
measure their contribution to the learning path — but
this might turn out to be much harder to realize than
the initial assumption, namely that of an objective
exam. In order to avoid learners to pick learning paths

that are unsuitable to achieve the desired learning goal,
i.e. to pass the exam, the number of choices offered to
a learner has to be restricted. Within our learning
system, training nodes are therefore qualified by meta-
data defining the audiences a node is suitable for.

4. Bayesian Learning

To improve the user adaption of the system, our

learning system includes a Bayesian decision system
that aims at finding the optimal exercise for a given
user and thus drives the system within the exercise
level introduced in section 2. For that, denote the ran-
dom event that a learner is part of a specific audience
by U, and the event that a learner successfully man-
aged the evaluation resp. the exam is named S.
Exercises are denoted by e € E in the exercise graph
G = (E,F) where F is the edge set of the exercise
graph. Furthermore, denote the random event that
the learner has visited nodes ey, ..., ey in this order by
®(1,...,k). Assume now that at this stage the learner
reached a decision point: amongst all suitable outgo-
ing nodes of the node ey, namely the set F(e) = {e; €
E|(ek,er) € F} the learner resp. the learning system
has to pick one, and by that extend the learning path
by one step. For brevity, we write ® := ®(1,... k)
for the unextended and ®; := ®(1,...,k,[) for the ex-
tended path in the following.
The optimization problem is now finding a node ¢; €
F(eg) such that the probability of passing the exam
successfully is maximal for the given audience U,
namely to maximize P(S|U N ®;). Using Bayes’ for-
mula [10], one finds

P(®,|UNS)PUNS)
P(®,|U)P(U)
(1)

The numerator contains now the probability of finding

the extension ®; of the path in the subgroup of suc-
cessful learners of the audience U times the probability
of being successful in U, the denominator the simi-
lar probabilities for the full audience. All probabilities
can be estimated by first running the system through
an initial training phase where relative frequencies of
all events are measured and the probabilities are esti-
mated, and the system can keep updating the probabil-
ities as students keep using it. By Laplace’s rule [10],
we can estimate all terms by relative frequencies and
by that find:

maxarg, P(S|®; N U) = maxarg,

[, NUNS|+1 )
&, NU[+1

i.e. the best extension e; of the path is that which

provided the best ratio of students of the audience U

maxarg, P(S|®; N U) = maxarg;
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passing the test so far, quite what one would have ex-
pected naively in first place. It thus remains an easy
task for the learning system to identify the exercise
paths picked by the user by querying a database, and
update the counts appropriately as soon as a student
fails or passes the final test for an exercise group.

We conclude this section with several remarks:
First, to make the estimation eqn. (2) useful, numera-
tor and denominator should be large and thus the sam-
ple size must be large. This imposes a restriction on
the granularity of the audience since a finer granularity
results in smaller members for each audience, reduc-
ing the sample size. Similarly, the number of paths to
consider should be small enough to have useful sample-
sizes. This can be realized by two mechanisms: First,
one could define the learning goals small enough and
by that limit the number of valid paths, i.e. provide
a lot of small evaluations within one course. Second,
note that the number of possible paths grows very fast
with the path length: by conditioning the expressions
above only by the last N steps taken by a student, the
number of possible paths to take into account is also
greatly reduced. This restriction of the path length has
also the nice interpretation as modelling a system of fi-
nite memory, where “memory” quite nicely coincides
with the memory of the average student.

5. The concept of Virtual Labs

Several options are available to implement the as-
set and training level of the eLearning framework in-
troduced in section 2: Java applets may, for example,
provide the necessary interactivity and flexibility to run
eLearning courses. However, the most attractive choice
for experimental sciences, e.g. physics, is a virtual lab-
oratory tailored to the interest of the course. They here
completent the traditional hands-on courses performed
in a “real” laboratory by not only providing experi-
ments that would be hard to realize for resource con-
straints, but can also allow experimental access on ab-
stract concepts discussed in theoretical courses. Thus,
virtual laboratories can build bridges between theory
and application. We will describe such an application
in the field of statistical mechanics in section 7 below.
Last but not least, virtual laboratories can be inter-
grated smoothly into an eLearning system as the one
described above and thus are also for that reason an
interesting research subject for us.

As an attempt to define this term, virtual labs use
the metaphor of a scientific lab as guiding line for the
design of the software. That is, similar to real labs,
they provide the framework and equipment to setup
and run experiments, i.e. qualitative and quantitative

explorations of physical or mathematical phenomena
of the model under examination. A virtual lab either
simulates the dynamics of a system, or represents a
mathematical algorithm to be studied. Furthermore,
virtual labs provide tools to measure on these experi-
ments and to explore their behavior. By that, a virtual
laboratory is more than just a simulation: It is a flex-
ible framework to study several systems of an entire
domain, possibly including simulations.

Specifically for research purposes, flexibility and,
more importantly, the integration and interconnection
of the labs with other software elements and exist-
ing infra-structures are desirable. From our viewpoint,
Maple is one of these components, an eLearning sys-
tem running an interactive course using laboratories
another. It is also attractive to think about the possi-
bility to combine labs from different fields for complex
experiments beyond the limit of one specific software
program. That is, modular software design is impera-
tive, and virtual labs cannot be monolithic applications
one finds just too often.

6. The Virtual Lab VideoEasel

A virtual lab prototype in the above sense demon-
strating the impacts of the demands on pedagogics and
software design is the virtual lab VideoEasel [13], devel-
oped at the DFG research center Matheon of the Berlin
universities. VideoEasel focuses on statistical mechan-
ics, lectured in the “Mathematical Physics” course.
Our audience is a mixture of mathematics and physics
students in their 6" semester.

Within VideoEasel, probability, analysis, dynamical
systems and cellular automata are the mathematical
disciplines that are brought to action in an environment
of applications like image compression and denoising,
phase transitions and irreversibility of large systems [8].
VideoEasel implements the microscopic rules of interest,
e.g. the classical Ising model [4] or lattice gas models,
by using so-called Cellular Automata [15]. We use here
a modular software design separated into a computa-
tion kernel implementing the microscopic dynamics of
a physical system, lacking any kind of graphical user in-
terface, and several graphical front-ends allowing users
to observe and manipulate the experiment.

These interfaces are, even more important, flexible
enough to be used for completely different purposes,
namely to integrate the laboratory into an eLearning
system as described in section 2, or to extend the pos-
siblities of the laboratory by the powers of a computer
algebra system like Maple, see section 7.

The rules defining the microscopic physical laws
are written in a C-like programming language and are
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compiled and linked to the kernel at runtime. A set
of predefined programs implementing various experi-
ments are available, though the user is always invited
to modify and change these rules if desired. Similar to
the simulation itself, measurement tools, also defined
by algorithms, can be linked into the experiment.

It is now in the hands of the controlling front-end to
define the measurements to be made, to modify the pa-
rameters of the model for the purpose of an experiment
and to evaluate the results of these measurements.

7. The Maple Interface

Combining virtual labs with CAS is attractive for
many reasons: first of all, labs provide the framework
for practical exercises and thus train students for their
future profession; the proper handling of numerical and
mathematical toolkits is, however, an important skill in
all applied sciences. It is therefore desirable to train the
usage of these tools right away on realistic, real-world
data.

Second, Maple is a highly sophisticated software
package that allows us to extend virtual labs by pro-
viding an interface to a powerful programming lan-
guage and to powerful mathematical tools not available
within the lab itself. E.g, Maple programs can be used
as the process control for experiments. Furthermore,
Maple can also act as a software bridge — a connector
— allowing the user to link several lab toolkits together
to simulate even more complex setups beyond the limit
of each of the components.

Let us we demonstrate an experiment on the Ising
model [4] for ferromagnetism. The Ising model is one
of the most prominent systems considered in statis-
tical mechanics as it demonstrates the effect of phase-
transitions in many-body systems, here between a mag-
netic and non-magnetic domain: similar to real ferro-
magnets, the Ising model shows ferromagnetic behavior
below, and non-ferromagnetic behavior above a critical
temperature T, also referred to as the “Curie Temper-
ature”. The existence of a phase transition can be rig-
orously proven [11], thus making the model interesting
for mathematical treatment. In this setup, the simu-
lation of the Ising model is performed by VideoEasel,
implementing the microscopic dynamics of the spins
from which the model is built.

The aim of a student experiment is to show the rela-
tion between the free energy and the magnetization of
the model, below and above the critical temperature,
and to analyze their dependence on an external field
for both temperature domains. A Maple-script, to be
written by the students, controls the temperature and
external magnetic field and collects data from the mea-

surements of the free energy and magnetization. The
data is returned, ready for plotting and numerical eval-
uation within Maple.

We deployed this setup in the mathematical physics
course at the TU Berlin, and students observed that
the magnetization as a function of the external field
becomes noncontinuous, and the free energy non-
differentiable for temperatures below T,.. This is ex-
actly the mathematical definition of a phase transition.
Furthermore, from the form of these curves they con-
jectured correctly that the first is proportional to the
derivative of the second. Most students then were able
to prove this relation exactly in the thermodynamic
limit from the theory taught in the lecture.

For the Maple side, the VideoEasel interface appears
as an external package that forwards appropriate calls
to the kernel. This package provides all the basic func-
tions to control and handle the numerical core of the
lab, including the attachment of measurement devices,
the adjustment of parameters or the modification of
the microscopic rules.

8. The Course Interface

As described above, the lab integrates into a pro-
totypical implementation of an exercise and tutoring
system following the ideas of section 2. The Course
Model consists of a database keeping elementary as-
set nodes in a textual representation. The asset nodes
formulate the assignment given to the user, the way
how to evaluate the solution presented by the student
and the reaction on the solution, i.e. they encode a
storyboard. To classify the solution provided by the
learner, an asset node specifies one or several external
java classes to be linked into the system on the fly; it
is the purpose of these classes to return textual eval-
uations for the learner’s behaivour. Despite providing
the assignment, the asset node also defines hints to be
presented to the learner on request, a name and a set
of audiences the node is suitable for, and all require-
ments and suggestions this asset depends on. By that
it groups assets into exercise units, implementing the
middle level of our course model, cf. section 2.

Since more than one node might be available to sat-
isfy the preconditions of an exercise, the learning sys-
tem has to decide which exercise to present. It is here
where the Bayesian estimation described in section 4
jumps in. However, the learner has the last say here:
The system offers several routes in the exercise graph,
but makes only a suggestion for the node to follow.

The learner model of the tutoring system is imple-
mented as a data base which, indexed by the user, keeps
information on the audience (see section 3) of the user,
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the credits obtained by the user in the asset nodes and
the learning path taken so far; this information there-
fore encodes the learner’s User Profile. Given this and
using the information which asset nodes have already
been successfully visited by the user, the software agent
can decide which asset nodes should be visited in fu-
ture assignments, can update the Bayesian estimator
once the exam has been taken, or present suggestions
which exercise to take next in the exercise network. As
explained in section 3, the credit points are not used
to drive the Bayesian estimator; they just provide a
convenient feedback mechanism for the student to give
a rough approximation on the learning success.

9. Conclusion and Outlook

The presented intelligent assistant system [7] follows
a storyboard, to be prepared by the lecturer of an au-
dience, thus following hard links between asset nodes
given by the vertices in the asset graph. Even though
exercises can be adapted by the system to a certain
degree by evaluating user profiles and picking suitable
assets from the dependency graph, the means to escape
this network are limited.

To improve the personalization of the system, de-
spite the “hard conditions” encoded into the if-clauses
in an asset node, “soft conditions” are to be intro-
duced: user behavior — individual and group behavior
— could be observed, and could be used to build up
a psychological profile of the user. Psychological vari-
ables one could exploit are for example whether the
user prefers graphical or textual representation of ma-
terial, or prefers a serialistic or holistic approach when
learning new material.

An important aspect is to keep the system trans-
parent. That is, the decisions made by the system,
e.g. why which asset node has been chosen, have to be
made apparent to the learner. Otherwise, it is likely
that students will not accept the feedback provided by
the tutoring system since they are unable to compre-
hend the reasons the decision was based upon. Also,
the user has to be allowed to “escape from the sto-
ryboard” because a tightly and statically linked asset
network might possibly kill the user’s creativity.

Thus, we have demonstrated that the combination
of virtual labs and Maple has attractive applications in
educations. Future work will be directed towards two
major goals: First, several components of individual-
ized feedback will be extended by developing a model
for user profiling. Second, VideoEasel will be integrated
in cooperative knowledge spaces [3]:
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