IMPLEMENTATON OF MOBILE INFORMATION DEVICE
PROFILE ON VIRTUAL LAB

Aravind Kumar Alagia Nambi

Department of Electrical and Electronics Engineering, Anna University,
Chennai-600025, India
Email: a_aravind k@yahoo.co.in

Abstract: The rate at which information is produced in today’s world is mind-boggling. The information is
changing by every minute and today’s corporate mantra is not “knowledge is power” but “Timely
knowledge is power*. Millions of Dollars are won or lost due to information or lack of it. Business
executives and corporate managers push their technology managers to provide information at the right
time in the right form. They want information on the go and want to be connected all the time to the
Internet or their corporate network. The rapid advancement of Technology in the field of
miniaturization and that of communications has introduced a lot of roaming devices for people to
connect through to the network like laptop, PDA, mobile phones and many embedded devices.
Programming for these devices were cumbersome and limited since each device supported their own
standard I/O ports, screen resolution and had specific configurations. The introduction of Java 2
Micro Edition (J2ME) has solved this problem to some extent. J2ME is divided into configuration and
profiles, which provide specific information to a group of related devices. Mobile phones can be
programmed using J2ME. If the mobility offered by the cellular phones combined with Electrical
Engineering many new uses can be found out for existing electrical machines. It will also enable
remote monitoring of electrical machines and the various parameters involved in Electrical
Engineering.

Keywords: Mobile Internet service, Mobile computing, MIDLET, Virtual lab

1 INTRODUCTION phones can be programmed using J2ME. If the
mobility offered by the cellular phones combined
with Electrical Engineering many new uses can
be found out for existing electrical machines. It
will also enable remote monitoring of electrical
machines and the various parameters involved in
Electrical Engineering.

The rate at which information is
produced in today’s world is mind-boggling. The
information is changing by every minute and
today’s corporate mantra is not “knowledge is
power” but “Timely knowledge is power®.
Millions of Dollars are won or lost due to

information or lack of it. Business executives and
corporate managers push their technology 1.2 DESIGN CONSIDERATIONS FOR

managers to provide information at the right time SMALL COMMUNICATION DEVICES
in the right form. They want information on the

go and want to be connected all the time to the Developing applications for small devices

Internet or their corporate network. The rapid requires one to keep certain strategies in mind

advancement of Technology in the field of during the design phase.

miniaturization and that of communications has e Keep it simple

introduced a lot of roaming devices for people to e Smaller is better:

connect through to the network like laptop, PDA, e Minimize run-time memory use

mobile phones and many embedded devices. e Let the server do most of the work

Programming for these devices were cumbersome

and limited since each device supported their own 2 J2ME — An Overview

standard I/O ports, screen resolution and had)

specific configurations. The introduction of Java _JZME uses conﬁguratmns and profiles to

2 Micro Edition (J2ME) has solved this problem customize the Java Runtime Environment (JRE).

to some extent. J2ME is divided into As a complete JRE, JZME is comprised of a

configuration and profiles, which provide specific configuration, which determines the JVM used,

information to a group of related devices. Mobile and a profile, which defines the application by
adding domain-specific classes. The

YF]',F.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03) COMPUTER
0-7695-1916-4/03 $17.00 © 2003 IEEE SOCIETY

configuration defines the basic run-time
environment as a set of core classes and a specific
JVM that run on specific types of devices. Two
Configurations have been defined for J2ME:
e Connected Device Configuration (CDC)
is used with the C virtual machine
(CVM) and is wused for 32-bit
architectures requiring more than 2 MB
of memory. An example of such a device
is a Net TV box.
e (Connected Limited Device
Configuration (CLDC) implementation
(static size of the wvirtual machine +
libraries) should fit in less than 128
kilobytes. CLDC is used with K Virtual
Machine (KVM). The CLDC
Specification assumes that applications
can be run in as little as 32 kilobytes of
Java heap space. (Example: Cell phones,
PDAs, etc)

2.1 PROFILES OVERVIEW

The profile defines the type of devices
supported by the application. Specifically, it adds
domain-specific classes to the J2ME
configuration to define certain uses for devices.
Profiles are built on top of configurations. Two
profiles have been defined for J2ME and are built
on CLDC: KJava and Mobile Information Device
Profile (MIDP). These profiles are geared toward
smaller devices.

Target devices for J2ME applications
developed using CLDC generally have the
following characteristics:

e 160 to 512 kilobytes of total
memory available for the Java
platform

e Limited power, often
powered

e Network connectivity, often with a
wireless, 1nconsistent connection
and with limited bandwidth

e User interfaces with varying degrees
of sophistication; sometimes with no
interface at all

battery

Some devices supported by CLDC include
wireless phones, pagers, mainstream personal
digital assistants (PDAs), and small retail
payment terminals.

2.2 KVM TECHNOLOGY

The KVM technology is a compact,
portable Java virtual machine specifically
designed from the ground up for small, resource-
constrained devices. The high-level design goal
for the KVM technology was to create the
smallest possible “complete” Java virtual
machine that would maintain all the central
aspects of the Java programming language, but
would run in a resource constrained device with
only a few hundred kilobytes total memory
budget. More specifically, the KVM technology
was designed to be:

e Small, with a static memory footprint of
the virtual machine core in the
range of 40 kilobytes to 80 kilobytes
(depending on compilation options
and the target platform,)

e C(Clean, well-commented, and highly
portable,

e Modular and customizable,

e As “complete” and “fast” as possible
without sacrificing the ~ other design
goals.

The “K” in KVM stands for “kilo.” It
was so named because its memory budget is
measured in kilobytes (whereas desktop systems
are measured in megabytes). KVM is suitable for
16/32-bit RISC/CISC microprocessors with a
total memory budget of no more than a few
hundred kilobytes (potentially less than 128
kilobytes). This typically applies to digital
cellular phones, pagers, personal organizers, and
small retail payment terminals. The minimum
total memory budget required by a KVM
implementation is about 128 kB, including the
virtual machine, the minimum Java class libraries
specified by the configuration, and some heap
space for running Java applications. A more
typical implementation requires a total memory
budget of 256 kB, of which half is used as heap
space for applications, 40 to 80 kB is needed for
the virtual machine itself, and the rest is reserved
for configuration and profile class libraries. The
ratio between volatile memory (e.g., DRAM) and non-
volatile memory (e.g., ROM or Flash) in the total
memory budget varies considerably depending on the
implementation, the device, the configuration, and the
profile. A simple KVM implementation without system
class prelinking support needs more volatile memory
than a KVM implementation with system classes (or
even applications) preloaded into the device.

The actual role of a KVM technology in
target devices can vary significantly. In some
implementations, the KVM technology is used on
top of an existing native software stack to give

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

YF]',F.

COMPUTER

SOCIETY

the Java content on the device. In other
implementations, the KVM technology is used at
a lower level to also implement the lower-level
system software and applications of the device in
the Java programming language. Several
alternative usage models are possible. At the
present time, the KVM and CLDC technologies
are closely related. CLDC technology runs only
on top of KVM technology, and CLDC
technology is the only configuration supported by
KVM technology. However, over time it is
expected that CLDC technology will run on other
J2ME virtual machine implementations and that
the KVM technology may perhaps support other
configurations as they are defined.

2.3 MIDlets:

J2ME architecture defines Mobile
Information Device (MID) Profile, which is
actually a set of Java APIs. Together with the
CLDC, it provides a complete J2ME application
runtime environment exclusively targeted at
mobile devices like cell phones. MIDP takes care
of user interface, networking, persistent storage,
and basic graphics. The primary objective is to
keep the application implementation size
minimal, so that it can perfectly fit in a small
memory footprint and can run on low-end
microprocessors with restricted heap sizes and
negligible garbage creation.

MIDlet is an application written for
Connected Limited devices like cell phones and
pagers which can work on top of J2ME
architecture. Devices that support MID profile
have Application Management Software (AMS)
which takes care of installing, supervising, and
removing MIDlets in an interactive way. The
AMS also takes care of the MIDlet Life Cycle
taking it through various phases. In the first phase
AMS gets MIDlet from a source and loads it in
the device memory. In the next phase AMS
examines the MIDlet and checks whether the
MIDlet confirms to the device security policy and
check for possible violations. In the launching
phase the MIDlet gets loaded into the KVM and
becomes up and active. AMS has the additional
responsibility of maintaining the version numbers
of all MIDlets for up gradation.

3 OVERVIEW

‘Virtual Lab’ developed in the work
demonstrates that electrical machines can be

controlled using a cell phone. It consists of a
stepper motor and a DC servomotor, both of
which can be controlled through the cell phone.
The angle of rotation and the direction of rotation
can be controlled. As far as servomotor is
concerned, the ON/OFF status can be checked,
the current speed (in RPM) can be checked and
mechanical time lag is measured from the cell
phone.

4 N\
& ¢ J
4 1\
. J
Figure 1

The primary objective was to make the
connection between the cell phone and computer
to which the motor is connected. A MIDlet that
establishes a HTTP connection between the cell
phone and the main server was written. The main
server then makes a socket connection to the
intended computer. The application specific
server program, which runs in the destination
computer, will be made to listen in a specific port
to which the main server makes the socket
connection and it opens a data stream for input
and output data flow. The application specific
server program then calls the native code through
Java Native Interface (JNI). The native code
accesses the port and does the required
computation and then returns the results to the
main server, which in turn routes the data to the
MIDlet running in the cell phone for display. This
control flow is shown in the figure 1.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

YF]',F.

COMPUTER

SOCIETY

3.1 STEPPER MOTOR CONTROL

Four poles DC stepper motor is used
here. The user inputs through the cell phone are
the degrees to rotate and the direction of rotation.
The number of steps required for the motor to
rotate through the given degree was calculated
and the appropriate signals were sent through the
printer port. The signal from the parallel port is
not strong enough to run the motor. To amplify
the signal the ULN2003 IC is used in the circuit.

The circuit details are shown in the figure 2.
STEP=EIMOCR

fromuparallel 4
(133 El
4
:

R
£00Z M0

Figure 2

The screens below (figure 3) are the actual output
as seen on the cell phone while controlling the
stepper motor

S —

T |I|“ @ -\.
Select one to |
I

(launch:

Launch
—]

i ED
tepper Motor Contral :
Direction:
CNCIockwize |
(Anticlockwise
. ——al
Exit + R

M |

T aill %ﬁ
STATUS : |

;Eesuﬂ! :
;m.:.tnr ratated to S0 |
degrees

Exit J

Figure 3

3.2 DC SERVOMOTOR CONTROL

12V DC Servomotor is used here. The
contact relay is used to switch the servomotor on
or off. The rating of the relay is 6V, 5A, 100
Ohm. The relay is controlled by the signals from
the parallel port. This is achieved through a
power transistor, SL100, which is CE configured.
The transistor is biased by the signal from the
parallel port given to the base of the transistor and
the relay operates. The circuit details are shown

in the figure 4.

RELAY
L
é SERVOMOTOR
_‘ =]
10uH l_
R2
SL 100
From
PC 470

Figure 4

A circular disk with a small slit is
mounted along with the servomotor. When the slit
comes alongside the optical sensor the sensor
senses the light and gives an output of 5V. This
biases the transistor. Otherwise the transistor is
not biased and no output is sensed. Every time the
output becomes 5V the program increments a
counter and the speed of the motor is thus
measured over a certain length of time. This
measurement is relayed back to the cell phone.
The circuit details are shown in the figure 5.

YF]',F.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

COMPUTER
SOCIETY

L
ST

o
. V1

5v
R1 optical sensor R1
470 47K

r K

L

Figure 5

Thus the ON/OFF status, current speed
and the mechanical time lag of the DC
servomotor can be monitored from the cell phone.
The screens below (Figure 6) show the actual
output while operating on the servomotor and
also show the outputs having the rated speed and
time constant of the servomotor.

(_Ihonitor speed

(TFvnerimant |
LE_.‘:{I't 4, ':'k-;
Tl B
STATUS :
Result:
Motar iz OFF
|
Back Oni
T alll @‘L
TATUS : i
Result : I

Current zpeed of i

Servo motor iz 2142
Pha

Back + Exit)

. |

pa————e
:F utll E
STATUS :

Fesult

Time Lag is 620 mSec

Bt =t

Figure 6

4 CONCLUSIONS

The control of the stepper motor and
servomotor from mobile device has been
successfully achieved. The stepper motor can be
extended to control the arm of a robot or the view
of a camera mounted on a remote object and can
be controlled remotely. Also done is an
experiment of calculating the time lag of the
servomotor. This can be extended to remote study
of motors and monitoring of motors and study of
motors through the Internet.

4.1 SUGGESTIONS FOR FURTHER
WORK

The work reported can further be
extended to represent the whole machines lab and
this could be further uploaded on the Internet on
the home page of our institution.

S REFERENCES

[1] C. Enrique Ortiz and Eric Giguere, 2001- Mobile
Information Device Profile for Java 2 Micro Edition
(J2ME): Professional Developer's Guide -

John Wiley & Sons; 1* Edition

[2] John W. Muchow, 2001 - Core J2ME Technology-
Prentice Hall PTR; 1*' Edition

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

YF]',F.

COMPUTER

SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

