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Abstract-Distributed telerobotic applications exploiting 
Internet-related technologies, such as virtual laboratories and 
on-line robots, require effective techniques for timely delivery of 
sensory data to remote clients. In these systems, there is a need 
to distribute increasing quantities of sensory data to a potentially 
large number of clients during system operation. In this paper, 
we describe and evaluate three implementations of a sensory 
data distribution subsystem in the context of a CORBA-based 
framework for telerobotic applications. Experimental results 
show that solutions exploiting CORBA Services and based on 
the Event Channel paradigm represent a viable alternative to 
ad-hoc solutions. The overhead associated to CORBA Services 
becomes less significant with larger message size. Moreover, 
these services ensure portability, edensihility, reduction in 
programming complexity, and improved scalability when the 
number of clients increases. 

I. INTRODUCTION 

Distributed computing systems and Internet-related tech- 
nologies have opened new application perspectives to robot 
teleoperation systems. Examples of novel applications, often 
broadly termed as “networked” or “on-line” robot systems [l], 
are tele-teaching/tele-leaming, virtual laboratories, remote and 
on-line equipment maintenance, and projects requiring col- 
laboration among remote users, experts, and devices [I]- 
[3]. These applications, while providing new opportunities, 
propose alternative challenges with respect to the traditional 
approach to robot teleoperation [4], [5] ,  which is based on 
a dedicated system architecture ensuring tight coupling of a 
master device and a slave robot by means of a dedicated 
connection. 

Indeed, many networked telerobotic applications become vi- 
able in the context of an existing infrastructure or a constrained 
budget, which leads to the development of heterogeneous sys- 
tems built by integrating a mix of new and legacy equipment, 
based on hardware acquired from multiple vendors, running 
different operating systems and programmed in a variety 
of languages. New telerobotic applications tend also to be 
very dynamic, with sensor and robot controllers dynamically 
connected to the network (e.g., an equipment available only 
part-time in a virtual laboratory), resulting in changes in the 
number and location of peers, in variable service roles, and in 
the need of load reconfiguration to improve distributed system 
performance. Clients can also register or disconnect at mn- 
time and bid for commanding or supervisory roles, leading to 
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a variety of dynamic interaction patterns. 
In spite of their specific features, telerobotic applications 

often share common requirements about the Server, Client, 
and communication structures. The costly development of a 
new application from scratch can thus be avoided relying 
on previous experience or, even better, on a common frame- 
work. To this end, telerobotic systems can take advantage 
from the developments in distributed systems research. In 
modern distributed systems design, open, reconfigurable, and 
scalable architectures can be built using commercial off-the- 
shelf (COTS) components. Moreover, the object-oriented (00) 
design methodology provides fundamental concepts such as 
inheritance, polymorphism, and hiding, useful in the develop- 
ment of complex distributed COTS-based applications [6 ] .  In 
this area, exploitation of middleware software between low- 
level APIs and ClientIServer applications is a major approach 
pursued to cope with dynamic and flexible applications. Sev- 
eral established middleware implementations are based on 
the Common Object Request Broker Architecture (CORBA) 
(h t  t p :  / /www. corba. org), a vendor-independent specifi- 
cation promoted by the Object Management Group (OMG) 
( h t  t p  : / /m. omg . org). CORBA overcomes the hetero- 
geneity problem arising also in networked robotic systems, 
since it allows interoperability of systems built using differ- 
ent software technologies, programming languages, operating 
systems, and hardware. 

A software framework for distributed telerobotic systems 
exploiting advanced CORBA features was presented in [71 
and shown to improve flexibility, portability, openness, exten- 
sibility, and reusability of the application. According to our 
experience, the current CORBA specification and its exten- 
sions reduce the programming effort of complex applications, 
hiding to developers details regarding communication among 
distrihuted objects. Two extensions of the CORBA standard 
particularly relevant for telerobotic applications are Asyn- 
chronous Method Invocation (AMI) and Real-Time CORBA 
(RT CORBA). They support, in a portable way, functionalities 
which are mandatory in Servers controlling robots and sensory 
systems, such as proper management of request priorities and 
preemptable Server actions. 

A distinct trend in networked robot systems is the need to 
distribute increasing quantities of sensory data to a potentially 
large number of Clients during system operation. The very 
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concept of networked robot aims at enabling a larger and 
dynamic set of users, which nonetheless must be provided 
with sufficient data for their real-time interaction with remote 
systems. In a telerobotic task, the timely availability of ade- 
quate sensory data to emulate the operator’s physical presence 
at the remote site is particularly crucial [8], [9]. The issue 
of sensory data distribution was not specifically dealt with in 
the proposed framework [7], but clearly manifested itself as a 
problem in later experimentation involving more data-intensive 
tasks [IO]. 

The classic Remote Procedure Call [ 111 found in most 
Object Request Brokers (ORBS) is unsuitable for applications 
involving a large number of remote sites that exchange signif- 
icant amounts of data, because it requires a polling operation 
that introduces saturation effects on both the network and the 
Server. Therefore, we identify the following guidelines in the 
development of a data distribution subsystem for networked 
robot applications: 

It should be able to cope with the heterogeneity of 
Clients. For example, Clients can choose to receive data 
from specific sensor subsets; also, their network connec- 
tion can range from high speed LANs to slow modems. 
It should be scalable. When additional Clients connect 
to the system and submit their requests, the performance 
should degrade only gracefully for Clients at same prior- 
ity, whereas higher priority Clients should maintain their 
current perceived performance. . It should transparently distribute data to Clients without 
requiring the Server to be aware of the number, locations, 
and platforms of Clients. . It should avoid polling and minimize the load of data 
distribution on both Servers and Clients. 

In this paper, after a brief description of the CORBA-based 

framework for teleoperation (Section II), we describe three 
communication models that have been implemented by means 
of CORBA Services to support data distribution to dynam- 
ically connecting Clients (Section In). We next report the 
experimental results obtained by the communication models 
(Section N), and finally summarize the contributions of the 
paper (Section V). 

11. A FRAMEWORK FOR TELEOPERATION 

A middleware such as CORBA offers a set of tools for 
connecting objects across heterogeneous processing nodes, 
thereby simplifying the development of distributed applica- 
tions, but does not implement an application by itself. Devel- 
opment of a telerobotic application, which is not a standard 
ClientIServer system, remains a fairly demanding task. To re- 
lieve this task, we implemented a software framework as a tool 
to face common requirements of telerobotic applications. The 
framework exploits a commercial off-the-shelf standard from 
distributed systems, namely Real-Time CORBA [7]. The main 
achievement of the framework is a multithreaded Server with 
concurrency mechanisms simplifying sharing of CPU among 
computation and communication services, dealing with Client 
requests preserving their ordering, and exhibiting different 
kinds of reaction depending on their urgency. The Server op- 
erates in real-time to allow implementation of the appropriate 
control laws with guaranteed operation. Finally, it provides 
synchronization mechanisms for exclusive allocation of non- 
sharable resources. To avoid dedicated solutions or proprietary 
features that prevent portability, the Server implementation 
takes advantage from recent extensions of Real-Time CORBA 
and CORBA Messaging [I21 that provide standard APIs for 
multithreading, synchronization, and asynchronous calls. 

The effectiveness of the framework has been assessed in 
the concurrent execution of simple telerobotic tasks with 

Fig. 1. Class Diagram of a peg-in-hole task 
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CLlEM SERVER 

Fig. 2. ClienVServer model for data exchange. 

specific priority levels [7]. The Server was able to provide 
differentiated service to these requests based on their portable 
priority attributes. Additional experiments investigated the 
completeness, modularity and flexibility of the framework by 
implementing a peg-in-hole task in the context of a complete 
telerobotic application with rich and heterogeneous sensory 
data retumed to multiple Clients [lo]. Location transparency 
provided by CORBA and portability of the framework to a 
number of operating systems allowed exploitation of the same 
code in several Client stations and reallocation of sensoriality 
among heterogeneous Server stations. The class diagram in 
Figure 1 shows the use of the framework in the development 
of two Server applications required in the peg-in-bole task one 
for manipulator control and local sensoriality, and the other for 
distribution of video images from a stereo camera system. 

As previously mentioned, our teleoperation framework did 
not include specific mechanisms to support efficient distribu- 
tion of sensory data to a large number of Clients in a scalable 
way. The development and implemention of these mechanisms 
is the contribution of this paper. 

111. COMMUNICATION MODELS 

The ClientJServer model is the most common communica- 
tion method in distributed object computing: a Client invokes 
an operation on a target object implemented at the Server 
side and then synchronously awaits to receive the response 
(Figure 2). Drawbacks of this model are the inactivity of 
the Client while waiting for a response, and the point-to- 
point synchronous communication, with a strong ClientJServer 
relationship that requires the Server to be always available. 
Partial solutions, such as implementing multithreading to avoid 
blocking of the Client, usually lead to a higher programming 
complexity. 

In data distribution applications, the ClienUServer model 
introduces even more difficulties. Indeed, as the server is 
not able to asynchronously reply to Clients and no group 
communication is supported, Clients must continuously poll 
the remote resource for new data. Polling operations introduce 
well known saturation effects on both the network, due to the 
useless flow of requests and responses, and the Server, unable 
to answer to a large number of simultaneous Client requests. 
More suitable for interactions among peers is the Pub- 

IishedSubscriber communication model [13]. Whenever the 
Publisher (sensor) changes state, it sends a notification to 
all its Subscribers. Subscribers in turn retrieve the changed 
data at their discietion. OMG introduced two variants of the 
Publisher/Subscriber communication model in the CORBA 
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Fig. 3. Distributed callback for data distribution. 

standard, the Even1 and Norijicaton Services, that strongly 
decouple Publisher and Subscribers by means of an "Event 
Channel". Exploitation of these services for data distribution 
is investigated next, along with a Callback-based technique. 

A. Distributed Callbacks 

To avoid polling operations and minimize network satu- 
ration, we implemented a sensor data distribution subsystem 
based on Distributed Callbacks [ 111. Following to the Observer 
pattern, we defined two CORBA classes for each available 
sensor: the subject at the Server side and the observer at the 
Client side (Figure 3). To receive data from a sensor, the 
Client application calls a method artach on the remote subject 
object, passing a reference to an observer object. Each sensor 
holds a list of all observer objects that have been attached. 
When new sensor data are ready, they are sent by the Server 
application to all the "attached" observer objects, through the 
invocation of the appropriate method. 

In this solution, and in the following ones, the peers involved 
in the communication do not exhibit the ClientJServer relation- 
ship anymore, therefore a more suitable terminology defines 
Supplier the peer producing the sensor data, and Consumer 
anyone who receives them. 

Though the Supplier/Consumer approach avoids Client ac- 
tive waiting and network saturation, new problems spawn at 
the Supplier side. When thousands of Consumers are attached, 
the Supplier is supposed to persistently store thousands of ref- 
erences and send a separate message to each in turn according 
to their preferences (each Consumer should be able to define 
the desired data receiving rate to avoid unnecessary distribu- 
tion of data). In this scenario the efficiency of the Supplier is 
greatly affected by the number of Consumers. Therefore, due 
to the high memory and computation requirements, scalability 
is bounded to a relatively small number of Consumers. 

B. Event Service 

To relieve the Supplier of administrative duties related to 
Consumers management, we implemented a second version of 
the data distribution subsystem based on the CORBA Event 
Service [14]. This component allows Suppliers and Consumers 
to exchange data without requiring the peers to know each 
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CONSUMERS 

SUPPLIERS 
Fig. 4. CORBA Event Service architecture. 

other explicitly. The general idea of the Event Service is to 
decouple Suppliers and Consumers using an Event Channel 
that acts as a Proxy Consumer for the real Suppliers and as 
a Proxy Supplier towards the real Consumers. Therefore, the 
Supplier can perform a non blocking send of the sensor data 
in the Event Channel, while the interested Consumers can 
connect to that channel to get the “event” (Figure 4). This 
implementation also allows a transparent implemeitation of 
the broadcast of sensor data to multiple Consumers. 

’ 

The CORBA standard.proposes four different models inter- 
leaving active and passive roles of Suppliers and Consumers. 
We discarded models with active Consumers as they can 
produce blocking communications when new data are not 
available at Sensor Proxy. For robotic applications the only 
reasonable model, seems to be the Canonical Push Model, 
where an active Supplier pushes an event towards passive 
Consumers registered with the Event Channel. 

Despite the benefits introduced by an Event Channel, ex- 
perimenting with this Service brings in several matters of 
discussion. Firstly, to avoid compile-time knowledge of the 
actual type of the “event”, sensor data must be communicated 
as an OMG Interface Definition Language (IDL) any type, 
that can contain any OMG IDL data type. The communication 
is therefore type-unsafe and Consumers are charged with 
the duty of converting the any type toward the data type 
they need. Secondly, the Event Service specification lacks 
event filtering features: everything is conveyed through the 
Event Channel, that in turn sends everything to any connected 
Consumer. Once again, the load of a missing property is 
laid on the Consumers that are forced to filter the whole 
data, looking for the ones they really need. Moreover, the 
flow of nnrequested data can again introduce the problem 
of network saturation. Finally, the Event Service specification 
does not consider QoS properties related to priority, reliability, 
and ordering. Attempting to ensure these properties in an 
application results in proprietary solutions that prevent ORB 
interoperability. 

C. Notification Service 

Our third solution for the distributed data subsystem is based 
on the CORBA Notification Service [HI ,  recently introduced 
in the CORBA Standard to overcome the previously listed 
deficiencies of the CORBA Event Service. 

The Notification Service is a superset of the Event Service; 
most components of the Event Service architecture (Figure 4) 
have been enhanced in the Notification Service. Notable im- 
provements with respect to the Event Service include filtering 
and QoS management. In the Notification Service each Client 
subscrihes to the precise set of events it is interested in receiv- 
ing through the use of filter objects, encapsulating one or more 
constraints. Two filter types are defined: a forwarding filrer, 
that decides whether the event can continue toward the next 
component, and a mapping jilter, that defines event priority 
and lifetime. Moreover, QoS properties for reliability, priority, 
ordering, and timeliness can be associated to a Channel, to a 
Proxy, or to a single event. 

IV. EMPIRICAL PERFORMANCE EVALUATION 

The communication models described in Section IU have 
been integrated in OUT CORBA-based framework for teler- 
obotic systems.. The implementation of the framework is 
written in C t +  and based on “The ACE ORB” (TAO) [16], 
a freely available, open-source, and standard-compliant Real- 
Time CORBA implementation. We remark that the fundamen- 
tal advantages brought by a CORBA-based framework for 
teleoperation are portability, flexibility, openness and reusabil- 
ity of code. These advantages, which cannot be quantified 
in an experimental section, are now retained also for the 
sensory data distribution subsystem. The experiments reported 
in this section only attempt to assess the relative performance 
in terms of latency and scalability of the three proposed 
data distribution mechanisms. It should be obvious that the 
Event and Notification Services provide additional features not 
exploited in the experimental assessment but very useful with 
many Consumers and general patterns of Consumer requests. 
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All experiments reported in this section follow the Push 
Model: a Supplier generates data and sends them to the Event 
Channel, when available, or directly to Consumer processes. 
A single Supplier and one or more Consumers, all requiring 
the same sensory data, are considered. Both Supplier and 
Consumer(s) are located on the same host, whereas the Event 
Channel can be on a different host. 

Two host machines exploited in the experiments are listed 
in Table I along with their features. The hosts are connected 
via a Fast Ethernet switch. Aside from our tests, the network 
had no significant traffic nor was any other processing taking 
place on these hosts. 

Host name Hardware configuration Operating system 
Tmvnlore PIV 2.4GHz. 512MB RAM SuSE Linux 8 
Pumn Plll WMMHr, 256MB RAM Salaris 8 

TABLE I 
EXPERIMENTAL SETUP: HOST FEATURES. 

In the remaining of this section we will identify the im- 
plementations of the data distribution subsystem with the 
following abbreviation: 

A based on Distributed Callbacks; 
B 
C 

based on CORBA Event Service; 
based on CORBA Notification Service. 

Implementation t,;" (ms) toug (ms) jitter (ms) 
A 0.12 0.38 0.58 
B 0.33 0.62 0.54 
C 0.40 0.72 0.58 

TABLE I1 
LATENCY WITH A 64 BYTE PACKET WHEN EVENT CHANNEL,  SUPPLIER 

A N D  CONSUMER ARE ON THE FASTER MACHINE. 

Implementation t,,, (ms) taus (ms) jittev (ms) 
A 0.12 0.v 0.58 ~ ~~ ~ ~~ ~~~ 

B 0.67 1.44 0.78 
C 0.79 1.49 0.74 

TABLE 111 
LATENCY WITH A 64 BYTE PACKET WHEN EVENT CHANNEL IS ON THE 

SLOWER MACHINE AND SUPPLIER AND CONSUMER ARE O N  THE FASTER 

MACHINE. 

Implementation t,in (ms) tovg (ms) jitter (ms) 
A 0.34 0.52 0.57 
B 0.68 1.28 0.98 
C 0.76 1.35 0.79 

TABLE 1V 
LATENCY WITH A 64 BYTE PACKET WIIEN EVENT CHANNEL IS ON THE 

FASTER MACHINE, A N D  SUPPLIER AND CONSUMER ARE ON THE SLOWER 

MACHINE. 

In the first set of experiments a 61 Byte packet is pushed by 
the Supplier to a single Consumer. Consumer activity is limited 
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to the update of the latency value so far. Tables 11, HI, and IV 
report latency's minimum, average, and standard deviation 
(jitter) values on a set of 50,000 samples considering alter- 
native allocations of Event Channel, Supplier, and Consumer. 
Allocation of the Event Channel only affects implementations 
B and C. 

Of course, due to the single Consumer type of experiment, 
the Distributed Callback approach exhibits a lower latency 
than Event and Notification Services implementations (whose 
additional features are not utilized). The added latency of 
Event and Notification Services is small when the Event 
Channel is located in the same host as the Supplier and Con- 
sumer. When the Channel is located on another machine the 
performance of CORBA services decreases (Tables 111, IV), 
since data are sent forth and back to the Channel host through 
the network. In the latter arrangement, which is recommended 
for scalability to multiple Consumers, latency decreases when 
the Event Channel is on the faster machine even if Supplier 
and Consumer are located on a slower machine. 

Similar results are obtained by considering a more realistic 
experiment where a 76817 Byte frame (a 320x240 bitmap 
with 256 grey levels, plus the PGM header) acquired from 
a video camera is pushed by the Supplier to the Consumer, 
that in tum displays the received frame on a screen. The 
latency of the three implementations is reported in Table V. 
Comparing Tables V and II, performance of Channel solutions 
and Distributed Callbacks is even closer on larger data size. 
Moreover, a three order of magnitude message size increase 
(from 64 to 76817 Bytes) determines a one order of magnitude 
increase in latency. With any data distribution technique, 
delivery of information is more efficient with larger chunks 
of data. 

Implementation t,in (ms) tang (ms) jitter (ms) 
A 1.97 2 x  IS ~. 
B 4.3 5.3 16 
C 3.9 4.9 I .9 

TABLE V 
LATENCY WITH A 76817 BYTE FRAME WHEN EVENT CHANNEL,  

SUPPLIER A N D  CONSUMER A R E  ON THE FASTER MACIIINE.  

Implementation t,in (ms) tovg (ms) jitter (ms) 
A 1.97 2.8 1.5 
B 22 25 4.5 
C 20.8 23 2.5 

TABLE VI 
LATENCY WITH A 76817 BYTE FRAME WHEN SUPPLIER A N D  CONSUMER 

ARE O N  THE FASTER MACHINE, A N D  EVENT CHANNEL 15 ON THE SLOWER 

MACHINE. 

Table VI confirms that placing the Event Channel on a sep- 
arate but slow host has a detrimental effect on data distribution 
performance. 

The next set of experiments measures the average time 
interval between two successive 64 Byte packet receptions 



(interanival time) increasing the number of Consumers from 1 
to 100. Results (in ms) for selected Consumer configurations 
are reported in Tables VI1 and VIII. 

Implem. N=l N=3 N=10 N=50 N=70 N=100 
A 0.73 0.98 3.76 37.16 45.53 82.77..  
B 1.25 1.48 4.52 38.00 41.94 71.46 
C 1.38 1.67 5.15 40.60 45.18 76.34 

TABLE VI1 
AVERAGE INTERARRIVAL TIME ( I N  MSECS) WIT11 A 64 BYTE PACKET, 

INCREASING THE NUMBER OF CONSUMERS (N). SUPPLIER. CONSUMERS 
AND EVENT CIIANNEL A R E  ON THE FASTER MACHINE. 

Implem. N=I N=3 ’ N=10 N=50 
A 0.73 0.98 3.16 31.16 
B 1.99 3.58 9.88 59.40 
C 2.12 3.83 10.16 65.80 

TABLE Vlll 
AVERAGE INTERARRIVAL TIME ( I N  MSECS) WITH A 64 BYTE PACKET, 

INCREASING TllB NUMBER OF CONSUMERS (N).  SUPPLIER A N D  

CONSUMERS ARE ON TIE FASTER MACHINE, A N D  EVENT CHANNEL IS  ON 

THE sLowx MACHINE. 

At the beginning of the range investigated, the,.Callback 
implementation has slightly better performance than Event 
Channel-based ones, because it requires data to cmss a lower 
number of hops. However, Event Service and Notification 
Service implementations have better scalability, and they show 
better performance than the Callback implementation when the 
number of Consumers increases. 

To summarize, for robot Servers performing several com- 
plex tasks (e.g., sensor data acquisition and distribution, 
motion planning, actuator control) and dealing with a large 
number of attached Clients, the Event Channel represents an 
effective tool to maintain the overall workload under control. 
When Clients have different QoS needs and at the expense of a 
slight overhead, the Notification Service is the most appropri- 
ate solution, thanks to its configurability options not available 
in Callback and Event Service implementions. Exploitation of 
CORBA services for data distribution preserves portability of 
the application. 

’ . 

V. CONCLUSIONS 
Distributed telerobotic applications require effective tech- 

niques for timely delivery of sensory data to remote clients. In 
this paper, we have described and evaluated three implemen- 
tations of a sensor data distribution subsystem in the context 
of a CORBA-based framework for telerobotic applications. 

Experimental results show that solutions exploiting CORBA 
Services and based on the Event Channel paradigm represent a 
viable altemative to ad-hoc solutions. The overhead associated 
to CORBA Services becomes less significant with larger 
message size,~and, moreover, these services achieve better ro- 
bustness, extensibility, reduction in programming complexity, 
and scalability when the number of clients increases. 

We now plan to investigate additional techniques for dis- 
tributing data with minimal overhead. Relevant ongoing re- 
search includes implementation of the publisherhbscriber 
model in the real-time domain [17]-[19] and the OMG ini- 
tiative toward a new CORBA Service for data distribution in 
real-time systems [201. 
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