
Proceedings of the 2003 IEEURSJ
Intl. Conference on Intelligent Robots and Systems
Las Vegas. Nevada . October 2003

Evaluation of Data Distribution Techniques in a
CORBA-based Telerobotic System

Michele Arnoretti, Stefano Bottazzi, Monica Reggiani, Stefano Caselli
RIMLab - Robotics and Intelligent Machines Laboratory

Dipartimento di Ingegneria dell’Informazione,
University of Panna,

Email: {amoretti,botlazzi,reggiani,caselli) @ ce.unipr.it

Abstract-Distributed telerobotic applications exploiting
Internet-related technologies, such as virtual laboratories and
on-line robots, require effective techniques for timely delivery of
sensory data to remote clients. In these systems, there is a need
to distribute increasing quantities of sensory data to a potentially
large number of clients during system operation. In this paper,
we describe and evaluate three implementations of a sensory
data distribution subsystem in the context of a CORBA-based
framework for telerobotic applications. Experimental results
show that solutions exploiting CORBA Services and based on
the Event Channel paradigm represent a viable alternative to
ad-hoc solutions. The overhead associated to CORBA Services
becomes less significant with larger message size. Moreover,
these services ensure portability, edensihility, reduction in
programming complexity, and improved scalability when the
number of clients increases.

I. INTRODUCTION

Distributed computing systems and Internet-related tech-
nologies have opened new application perspectives to robot
teleoperation systems. Examples of novel applications, often
broadly termed as “networked” or “on-line” robot systems [l],
are tele-teaching/tele-leaming, virtual laboratories, remote and
on-line equipment maintenance, and projects requiring col-
laboration among remote users, experts, and devices [I]-
[3]. These applications, while providing new opportunities,
propose alternative challenges with respect to the traditional
approach to robot teleoperation [4], [5] , which is based on
a dedicated system architecture ensuring tight coupling of a
master device and a slave robot by means of a dedicated
connection.

Indeed, many networked telerobotic applications become vi-
able in the context of an existing infrastructure or a constrained
budget, which leads to the development of heterogeneous sys-
tems built by integrating a mix of new and legacy equipment,
based on hardware acquired from multiple vendors, running
different operating systems and programmed in a variety
of languages. New telerobotic applications tend also to be
very dynamic, with sensor and robot controllers dynamically
connected to the network (e.g., an equipment available only
part-time in a virtual laboratory), resulting in changes in the
number and location of peers, in variable service roles, and in
the need of load reconfiguration to improve distributed system
performance. Clients can also register or disconnect at mn-
time and bid for commanding or supervisory roles, leading to

07803-78601/03/$17.00 0 2003 IEEE 1

a variety of dynamic interaction patterns.
In spite of their specific features, telerobotic applications

often share common requirements about the Server, Client,
and communication structures. The costly development of a
new application from scratch can thus be avoided relying
on previous experience or, even better, on a common frame-
work. To this end, telerobotic systems can take advantage
from the developments in distributed systems research. In
modern distributed systems design, open, reconfigurable, and
scalable architectures can be built using commercial off-the-
shelf (COTS) components. Moreover, the object-oriented (00)
design methodology provides fundamental concepts such as
inheritance, polymorphism, and hiding, useful in the develop-
ment of complex distributed COTS-based applications [6] . In
this area, exploitation of middleware software between low-
level APIs and ClientIServer applications is a major approach
pursued to cope with dynamic and flexible applications. Sev-
eral established middleware implementations are based on
the Common Object Request Broker Architecture (CORBA)
(h t t p : / /www. corba. org), a vendor-independent specifi-
cation promoted by the Object Management Group (OMG)
(h t t p : / /m. omg . org). CORBA overcomes the hetero-
geneity problem arising also in networked robotic systems,
since it allows interoperability of systems built using differ-
ent software technologies, programming languages, operating
systems, and hardware.

A software framework for distributed telerobotic systems
exploiting advanced CORBA features was presented in [71
and shown to improve flexibility, portability, openness, exten-
sibility, and reusability of the application. According to our
experience, the current CORBA specification and its exten-
sions reduce the programming effort of complex applications,
hiding to developers details regarding communication among
distrihuted objects. Two extensions of the CORBA standard
particularly relevant for telerobotic applications are Asyn-
chronous Method Invocation (AMI) and Real-Time CORBA
(RT CORBA). They support, in a portable way, functionalities
which are mandatory in Servers controlling robots and sensory
systems, such as proper management of request priorities and
preemptable Server actions.

A distinct trend in networked robot systems is the need to
distribute increasing quantities of sensory data to a potentially
large number of Clients during system operation. The very

100

concept of networked robot aims at enabling a larger and
dynamic set of users, which nonetheless must be provided
with sufficient data for their real-time interaction with remote
systems. In a telerobotic task, the timely availability of ade-
quate sensory data to emulate the operator’s physical presence
at the remote site is particularly crucial [8], [9]. The issue
of sensory data distribution was not specifically dealt with in
the proposed framework [7], but clearly manifested itself as a
problem in later experimentation involving more data-intensive
tasks [IO].

The classic Remote Procedure Call [111 found in most
Object Request Brokers (ORBS) is unsuitable for applications
involving a large number of remote sites that exchange signif-
icant amounts of data, because it requires a polling operation
that introduces saturation effects on both the network and the
Server. Therefore, we identify the following guidelines in the
development of a data distribution subsystem for networked
robot applications:

It should be able to cope with the heterogeneity of
Clients. For example, Clients can choose to receive data
from specific sensor subsets; also, their network connec-
tion can range from high speed LANs to slow modems.
It should be scalable. When additional Clients connect
to the system and submit their requests, the performance
should degrade only gracefully for Clients at same prior-
ity, whereas higher priority Clients should maintain their
current perceived performance. . It should transparently distribute data to Clients without
requiring the Server to be aware of the number, locations,
and platforms of Clients. . It should avoid polling and minimize the load of data
distribution on both Servers and Clients.

In this paper, after a brief description of the CORBA-based

framework for teleoperation (Section II), we describe three
communication models that have been implemented by means
of CORBA Services to support data distribution to dynam-
ically connecting Clients (Section In). We next report the
experimental results obtained by the communication models
(Section N), and finally summarize the contributions of the
paper (Section V).

11. A FRAMEWORK FOR TELEOPERATION

A middleware such as CORBA offers a set of tools for
connecting objects across heterogeneous processing nodes,
thereby simplifying the development of distributed applica-
tions, but does not implement an application by itself. Devel-
opment of a telerobotic application, which is not a standard
ClientIServer system, remains a fairly demanding task. To re-
lieve this task, we implemented a software framework as a tool
to face common requirements of telerobotic applications. The
framework exploits a commercial off-the-shelf standard from
distributed systems, namely Real-Time CORBA [7]. The main
achievement of the framework is a multithreaded Server with
concurrency mechanisms simplifying sharing of CPU among
computation and communication services, dealing with Client
requests preserving their ordering, and exhibiting different
kinds of reaction depending on their urgency. The Server op-
erates in real-time to allow implementation of the appropriate
control laws with guaranteed operation. Finally, it provides
synchronization mechanisms for exclusive allocation of non-
sharable resources. To avoid dedicated solutions or proprietary
features that prevent portability, the Server implementation
takes advantage from recent extensions of Real-Time CORBA
and CORBA Messaging [I21 that provide standard APIs for
multithreading, synchronization, and asynchronous calls.

The effectiveness of the framework has been assessed in
the concurrent execution of simple telerobotic tasks with

Fig. 1. Class Diagram of a peg-in-hole task

1101

CLlEM SERVER

Fig. 2. ClienVServer model for data exchange.

specific priority levels [7]. The Server was able to provide
differentiated service to these requests based on their portable
priority attributes. Additional experiments investigated the
completeness, modularity and flexibility of the framework by
implementing a peg-in-hole task in the context of a complete
telerobotic application with rich and heterogeneous sensory
data retumed to multiple Clients [lo]. Location transparency
provided by CORBA and portability of the framework to a
number of operating systems allowed exploitation of the same
code in several Client stations and reallocation of sensoriality
among heterogeneous Server stations. The class diagram in
Figure 1 shows the use of the framework in the development
of two Server applications required in the peg-in-bole task one
for manipulator control and local sensoriality, and the other for
distribution of video images from a stereo camera system.

As previously mentioned, our teleoperation framework did
not include specific mechanisms to support efficient distribu-
tion of sensory data to a large number of Clients in a scalable
way. The development and implemention of these mechanisms
is the contribution of this paper.

111. COMMUNICATION MODELS

The ClientJServer model is the most common communica-
tion method in distributed object computing: a Client invokes
an operation on a target object implemented at the Server
side and then synchronously awaits to receive the response
(Figure 2). Drawbacks of this model are the inactivity of
the Client while waiting for a response, and the point-to-
point synchronous communication, with a strong ClientJServer
relationship that requires the Server to be always available.
Partial solutions, such as implementing multithreading to avoid
blocking of the Client, usually lead to a higher programming
complexity.

In data distribution applications, the ClienUServer model
introduces even more difficulties. Indeed, as the server is
not able to asynchronously reply to Clients and no group
communication is supported, Clients must continuously poll
the remote resource for new data. Polling operations introduce
well known saturation effects on both the network, due to the
useless flow of requests and responses, and the Server, unable
to answer to a large number of simultaneous Client requests.
More suitable for interactions among peers is the Pub-

IishedSubscriber communication model [13]. Whenever the
Publisher (sensor) changes state, it sends a notification to
all its Subscribers. Subscribers in turn retrieve the changed
data at their discietion. OMG introduced two variants of the
Publisher/Subscriber communication model in the CORBA

a
f

Fig. 3. Distributed callback for data distribution.

standard, the Even1 and Norijicaton Services, that strongly
decouple Publisher and Subscribers by means of an "Event
Channel". Exploitation of these services for data distribution
is investigated next, along with a Callback-based technique.

A. Distributed Callbacks

To avoid polling operations and minimize network satu-
ration, we implemented a sensor data distribution subsystem
based on Distributed Callbacks [111. Following to the Observer
pattern, we defined two CORBA classes for each available
sensor: the subject at the Server side and the observer at the
Client side (Figure 3). To receive data from a sensor, the
Client application calls a method artach on the remote subject
object, passing a reference to an observer object. Each sensor
holds a list of all observer objects that have been attached.
When new sensor data are ready, they are sent by the Server
application to all the "attached" observer objects, through the
invocation of the appropriate method.

In this solution, and in the following ones, the peers involved
in the communication do not exhibit the ClientJServer relation-
ship anymore, therefore a more suitable terminology defines
Supplier the peer producing the sensor data, and Consumer
anyone who receives them.

Though the Supplier/Consumer approach avoids Client ac-
tive waiting and network saturation, new problems spawn at
the Supplier side. When thousands of Consumers are attached,
the Supplier is supposed to persistently store thousands of ref-
erences and send a separate message to each in turn according
to their preferences (each Consumer should be able to define
the desired data receiving rate to avoid unnecessary distribu-
tion of data). In this scenario the efficiency of the Supplier is
greatly affected by the number of Consumers. Therefore, due
to the high memory and computation requirements, scalability
is bounded to a relatively small number of Consumers.

B. Event Service

To relieve the Supplier of administrative duties related to
Consumers management, we implemented a second version of
the data distribution subsystem based on the CORBA Event
Service [14]. This component allows Suppliers and Consumers
to exchange data without requiring the peers to know each

1102

CONSUMERS

SUPPLIERS
Fig. 4. CORBA Event Service architecture.

other explicitly. The general idea of the Event Service is to
decouple Suppliers and Consumers using an Event Channel
that acts as a Proxy Consumer for the real Suppliers and as
a Proxy Supplier towards the real Consumers. Therefore, the
Supplier can perform a non blocking send of the sensor data
in the Event Channel, while the interested Consumers can
connect to that channel to get the “event” (Figure 4). This
implementation also allows a transparent implemeitation of
the broadcast of sensor data to multiple Consumers.

’

The CORBA standard.proposes four different models inter-
leaving active and passive roles of Suppliers and Consumers.
We discarded models with active Consumers as they can
produce blocking communications when new data are not
available at Sensor Proxy. For robotic applications the only
reasonable model, seems to be the Canonical Push Model,
where an active Supplier pushes an event towards passive
Consumers registered with the Event Channel.

Despite the benefits introduced by an Event Channel, ex-
perimenting with this Service brings in several matters of
discussion. Firstly, to avoid compile-time knowledge of the
actual type of the “event”, sensor data must be communicated
as an OMG Interface Definition Language (IDL) any type,
that can contain any OMG IDL data type. The communication
is therefore type-unsafe and Consumers are charged with
the duty of converting the any type toward the data type
they need. Secondly, the Event Service specification lacks
event filtering features: everything is conveyed through the
Event Channel, that in turn sends everything to any connected
Consumer. Once again, the load of a missing property is
laid on the Consumers that are forced to filter the whole
data, looking for the ones they really need. Moreover, the
flow of nnrequested data can again introduce the problem
of network saturation. Finally, the Event Service specification
does not consider QoS properties related to priority, reliability,
and ordering. Attempting to ensure these properties in an
application results in proprietary solutions that prevent ORB
interoperability.

C. Notification Service

Our third solution for the distributed data subsystem is based
on the CORBA Notification Service [HI , recently introduced
in the CORBA Standard to overcome the previously listed
deficiencies of the CORBA Event Service.

The Notification Service is a superset of the Event Service;
most components of the Event Service architecture (Figure 4)
have been enhanced in the Notification Service. Notable im-
provements with respect to the Event Service include filtering
and QoS management. In the Notification Service each Client
subscrihes to the precise set of events it is interested in receiv-
ing through the use of filter objects, encapsulating one or more
constraints. Two filter types are defined: a forwarding filrer,
that decides whether the event can continue toward the next
component, and a mapping jilter, that defines event priority
and lifetime. Moreover, QoS properties for reliability, priority,
ordering, and timeliness can be associated to a Channel, to a
Proxy, or to a single event.

IV. EMPIRICAL PERFORMANCE EVALUATION

The communication models described in Section IU have
been integrated in OUT CORBA-based framework for teler-
obotic systems.. The implementation of the framework is
written in C t + and based on “The ACE ORB” (TAO) [16],
a freely available, open-source, and standard-compliant Real-
Time CORBA implementation. We remark that the fundamen-
tal advantages brought by a CORBA-based framework for
teleoperation are portability, flexibility, openness and reusabil-
ity of code. These advantages, which cannot be quantified
in an experimental section, are now retained also for the
sensory data distribution subsystem. The experiments reported
in this section only attempt to assess the relative performance
in terms of latency and scalability of the three proposed
data distribution mechanisms. It should be obvious that the
Event and Notification Services provide additional features not
exploited in the experimental assessment but very useful with
many Consumers and general patterns of Consumer requests.

1103

All experiments reported in this section follow the Push
Model: a Supplier generates data and sends them to the Event
Channel, when available, or directly to Consumer processes.
A single Supplier and one or more Consumers, all requiring
the same sensory data, are considered. Both Supplier and
Consumer(s) are located on the same host, whereas the Event
Channel can be on a different host.

Two host machines exploited in the experiments are listed
in Table I along with their features. The hosts are connected
via a Fast Ethernet switch. Aside from our tests, the network
had no significant traffic nor was any other processing taking
place on these hosts.

Host name Hardware configuration Operating system
Tmvnlore PIV 2.4GHz. 512MB RAM SuSE Linux 8
Pumn Plll WMMHr, 256MB RAM Salaris 8

TABLE I
EXPERIMENTAL SETUP: HOST FEATURES.

In the remaining of this section we will identify the im-
plementations of the data distribution subsystem with the
following abbreviation:

A based on Distributed Callbacks;
B
C

based on CORBA Event Service;
based on CORBA Notification Service.

Implementation t,;" (ms) toug (ms) jitter (ms)
A 0.12 0.38 0.58
B 0.33 0.62 0.54
C 0.40 0.72 0.58

TABLE I1
LATENCY WITH A 64 BYTE PACKET WHEN EVENT CHANNEL, SUPPLIER

A N D CONSUMER ARE ON THE FASTER MACHINE.

Implementation t,,, (ms) taus (ms) jittev (ms)
A 0.12 0.v 0.58 ~ ~~ ~ ~~ ~~~

B 0.67 1.44 0.78
C 0.79 1.49 0.74

TABLE 111
LATENCY WITH A 64 BYTE PACKET WHEN EVENT CHANNEL IS ON THE

SLOWER MACHINE AND SUPPLIER AND CONSUMER ARE O N THE FASTER

MACHINE.

Implementation t,in (ms) tovg (ms) jitter (ms)
A 0.34 0.52 0.57
B 0.68 1.28 0.98
C 0.76 1.35 0.79

TABLE 1V
LATENCY WITH A 64 BYTE PACKET WIIEN EVENT CHANNEL IS ON THE

FASTER MACHINE, A N D SUPPLIER AND CONSUMER ARE ON THE SLOWER

MACHINE.

In the first set of experiments a 61 Byte packet is pushed by
the Supplier to a single Consumer. Consumer activity is limited

~

1104

to the update of the latency value so far. Tables 11, HI, and IV
report latency's minimum, average, and standard deviation
(jitter) values on a set of 50,000 samples considering alter-
native allocations of Event Channel, Supplier, and Consumer.
Allocation of the Event Channel only affects implementations
B and C.

Of course, due to the single Consumer type of experiment,
the Distributed Callback approach exhibits a lower latency
than Event and Notification Services implementations (whose
additional features are not utilized). The added latency of
Event and Notification Services is small when the Event
Channel is located in the same host as the Supplier and Con-
sumer. When the Channel is located on another machine the
performance of CORBA services decreases (Tables 111, IV),
since data are sent forth and back to the Channel host through
the network. In the latter arrangement, which is recommended
for scalability to multiple Consumers, latency decreases when
the Event Channel is on the faster machine even if Supplier
and Consumer are located on a slower machine.

Similar results are obtained by considering a more realistic
experiment where a 76817 Byte frame (a 320x240 bitmap
with 256 grey levels, plus the PGM header) acquired from
a video camera is pushed by the Supplier to the Consumer,
that in tum displays the received frame on a screen. The
latency of the three implementations is reported in Table V.
Comparing Tables V and II, performance of Channel solutions
and Distributed Callbacks is even closer on larger data size.
Moreover, a three order of magnitude message size increase
(from 64 to 76817 Bytes) determines a one order of magnitude
increase in latency. With any data distribution technique,
delivery of information is more efficient with larger chunks
of data.

Implementation t,in (ms) tang (ms) jitter (ms)
A 1.97 2 x IS ~.
B 4.3 5.3 16
C 3.9 4.9 I .9

TABLE V
LATENCY WITH A 76817 BYTE FRAME WHEN EVENT CHANNEL,

SUPPLIER A N D CONSUMER A R E ON THE FASTER MACIIINE.

Implementation t,in (ms) tovg (ms) jitter (ms)
A 1.97 2.8 1.5
B 22 25 4.5
C 20.8 23 2.5

TABLE VI
LATENCY WITH A 76817 BYTE FRAME WHEN SUPPLIER A N D CONSUMER

ARE O N THE FASTER MACHINE, A N D EVENT CHANNEL 15 ON THE SLOWER

MACHINE.

Table VI confirms that placing the Event Channel on a sep-
arate but slow host has a detrimental effect on data distribution
performance.

The next set of experiments measures the average time
interval between two successive 64 Byte packet receptions

(interanival time) increasing the number of Consumers from 1
to 100. Results (in ms) for selected Consumer configurations
are reported in Tables VI1 and VIII.

Implem. N=l N=3 N=10 N=50 N=70 N=100
A 0.73 0.98 3.76 37.16 45.53 82.77..
B 1.25 1.48 4.52 38.00 41.94 71.46
C 1.38 1.67 5.15 40.60 45.18 76.34

TABLE VI1
AVERAGE INTERARRIVAL TIME (I N MSECS) WIT11 A 64 BYTE PACKET,

INCREASING THE NUMBER OF CONSUMERS (N). SUPPLIER. CONSUMERS
AND EVENT CIIANNEL A R E ON THE FASTER MACHINE.

Implem. N=I N=3 ’ N=10 N=50
A 0.73 0.98 3.16 31.16
B 1.99 3.58 9.88 59.40
C 2.12 3.83 10.16 65.80

TABLE Vlll
AVERAGE INTERARRIVAL TIME (I N MSECS) WITH A 64 BYTE PACKET,

INCREASING TllB NUMBER OF CONSUMERS (N). SUPPLIER A N D

CONSUMERS ARE ON TIE FASTER MACHINE, A N D EVENT CHANNEL IS ON

THE sLowx MACHINE.

At the beginning of the range investigated, the,.Callback
implementation has slightly better performance than Event
Channel-based ones, because it requires data to cmss a lower
number of hops. However, Event Service and Notification
Service implementations have better scalability, and they show
better performance than the Callback implementation when the
number of Consumers increases.

To summarize, for robot Servers performing several com-
plex tasks (e.g., sensor data acquisition and distribution,
motion planning, actuator control) and dealing with a large
number of attached Clients, the Event Channel represents an
effective tool to maintain the overall workload under control.
When Clients have different QoS needs and at the expense of a
slight overhead, the Notification Service is the most appropri-
ate solution, thanks to its configurability options not available
in Callback and Event Service implementions. Exploitation of
CORBA services for data distribution preserves portability of
the application.

’ .

V. CONCLUSIONS
Distributed telerobotic applications require effective tech-

niques for timely delivery of sensory data to remote clients. In
this paper, we have described and evaluated three implemen-
tations of a sensor data distribution subsystem in the context
of a CORBA-based framework for telerobotic applications.

Experimental results show that solutions exploiting CORBA
Services and based on the Event Channel paradigm represent a
viable altemative to ad-hoc solutions. The overhead associated
to CORBA Services becomes less significant with larger
message size,~and, moreover, these services achieve better ro-
bustness, extensibility, reduction in programming complexity,
and scalability when the number of clients increases.

We now plan to investigate additional techniques for dis-
tributing data with minimal overhead. Relevant ongoing re-
search includes implementation of the publisherhbscriber
model in the real-time domain [17]-[19] and the OMG ini-
tiative toward a new CORBA Service for data distribution in
real-time systems [201.

ACKNOWLEDGMENT

This research is partially supported by MIUR (Italian Min-
istry of Education, University and Research) under project
RoboCare (A Multi-Agent System with Intelligent Fixed and
Mobile Robotic Components).

REFERENCES
[I] K. Goldberg and R. Sicgwart, Eds., Bgond Webcomr an Introduction

to Online Robots. The MIT Press, 2001.
121 WS2WI: lnlcmnliowl Workshop on Tele-Education in Mechntmnics

Based on V i n u l Lnbornton‘es, Weingarten, Germany. July 2001.
131 P. Backes, K. Tso, and G. T h q , “Mars Pathfinder Mission Intemet-

Based Operations using WITS:’ in IEEE Int. Conf Robotics and
Automntion, May 1998, pp. 286291.

141 T. B. Sheridan, Teiembotics. Autonution. and Human S u p r v i s q
control.

151 R. I. Anderson and M. W. Spong. “Bilateral Contool of Teleoperaton
with Time Delay:’ IEEE Tmmns. on Automatic Control, vol. 34, no. 5,
1989.

161 B. Douglas, Doing Hard Time: Dodoping R e d T i m Sysrems wirh
UML, Objectr, Frameworks, and Pottems.

171 S. Boaazli, S . Caselli. M. Reggiani. and M. Amoretti. “‘A Software
Framework based on Real-Time CORBA for Telerobotic Systems:’ in
IEEWRSJ Inl7 Conf Inleiligenr Robots and Sjsrem, 2002.

181 C. Sayers, Remote Contml Robotics.
191 Y. Tsumaki, T. Goshozono, K. Abe. M. Uchiyama, R. Koeppe. and

G. Hirzinger. “Verification Of an Advanced Space Teleoperation System
wing Intemet:’ in IEEURSJ In17 Conf on Inteliigenr Robots md

Cambridge. M A MIT Press, 1992.

Addiwn-Wesley. 1999.

Springer Verlag, 1999.

Systeks 2w0, pp. 1167-1172.
[IO] M. AmOTettj. S . Boaazzi, M. Reggiani. and S. Caselli, “Experience in

teleooeration svstem desien based on real-time CORBA.” in Int’l Cont: -
on Adwmced Roboiics, 2003.

[I 11 M. Henning and S . Mnoski, Advanced CORBA Programming with C++.
Addison-Wesley, 1999.

[I?] R e Common Object Request Broker: Architecture and Spec@cation
Revision 2.4, Object Management Group, Oct. 2000.

I131 E Buschmann, R. Meunier, H. Rohnert, P Sammerlad. and M. Stal, A
System of Pattems. Wiley and Sons. 1996.

1141 Object Management Group, “Event service specification, v. 1.1,’’
h n p : / / w w w . o m g . o r g / t f h ~ ~ l ~ g y / d o c ~ m ~ ~ ~ f ~ r m ~ ~ e ~ e ~ t ~ ~ r v i ~ ~ . h t m ,
Mar. 2001.

h U p : / / w w w . o m g . o r g / t e c h n o l o g y ~ d o c ~ m ~ ~ ~ l f ~ r m ~ n o t i f i ~ ~ t i ~ ~ ~ ~ r v i c e . h ~ ,
Aug. 2002.

I161 Disuibvted Object Computing (W C) Gmup, “Real-time CORBA with
TA0 (The ACE ORB),” hup://www.ece.uci.edu/ whmidflAO.html.

I171 R. Rajkumar, M. Gagliardi, and L. Sha, “The real-time put-
lishedsubwriber inter-pmcess communication model for diruibulcd real-
time systems: Design and implementation,” in IEEE Real-time Techno/-
ogy and Applications Sjmporium, 1995.

I181 T. Harrison. D. Levine, and D. Schmidt, ‘The design and performance of
a real-time CORBA Event Service,” in ACM SIGPlAN Conferences on
Object-Oriented Pmgmamming, Systems. Lnngungcs. and Applications.

1191 M. Mock and E. Net< “Real-time communication in autonomous robot
systems,” in Inf. C m f on Autonomous Decentmlized Sjrtemr, 1999.

I201 Ohject Management Group, “Dala distribution service for real-time
systems, request for propsal:’ Apr. 2002.

1151 -, “Notification service specification. v. I.O.1,”

1105

http://hup://www.ece.uci.edu

