
Dynamic Workflow in a Grid Enabled Problem Solving Environment

Zhiming Zhao Adam Belloum Hakan Yakali Peter Sloot Bob Hertzberger
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098SJ, Amsterdam, the Netherlands
{zhiming|adam|yakali|sloot|bob}@science.uva.nl

Abstract

In a Problem Solving Environment (PSE), a scientific
workflow management system (SWMS) provides a meta en-
vironment for managing activities and data in scientific ex-
periments, for prototyping experimental computing systems
and for orchestrating the runtime system behaviour. A Grid
infrastructure makes data and computing intensive experi-
ments feasible in PSEs but also requires the management
of workflow to support dynamics of the flow execution. A
dynamic SWMS includes a human user in the runtime loop
of a flow execution, and allows an engine to flexibly orches-
trate a workflow according to the human decision and the
runtime states of the environment. In this paper, we present
our research in an ongoing project: Virtual Laboratory for
e-Science (VL-e). An agent based solution is proposed to
enhance an existing Grid enabled Problem Solving Envi-
ronment framework called VLAM-G. The intelligence for
problem solving strategies and for workflow orchestration
is encapsulated as knowledge in two types of agents: study
managers and scenario conductors. 1

Key words: Grid, Problem Solving Environment, Sci-
entific Workflow, Multi Agent Systems, Petri net.

1. Introduction

In scientific research, a Problem Solving Environment
(PSE) organises different software utilities, e.g., simulators,
visualisation and data analysis tools, as a meta experimental
environment and allows a scientist to assemble these utili-
ties and customise their interaction for different purposes of
experiments [10]. An important guise of such meta envi-
ronment is a scientific workflow management system [21].
By explicitly modelling the dependencies between experi-

1This work was carried out in the context of the Virtual Laboratory
for e-Science project (www.vl-e.nl). Part of this project is supported by
a BSIK grant from the Dutch Ministry of Education, Culture and Science
(OC&W) and is part of the ICT innovation program of the Ministry of
Economic Affairs (EZ).

ment processes, a scientific workflow management system
(SWMS) orchestrates the runtime behaviour of involved re-
sources according to a high level description. Data flow,
control flow or Petri net based mechanisms have been used
to model the scientific workflow [8, 17, 24, 34].

Grid environments couple heterogeneous resources, such
as computing elements, storage devices and software com-
ponents, and allow a group of trusted users (Virtual Organ-
isations (VO)) to deploy the resources based on certain po-
lices [12]. Utilising a Grid infrastructure, a Grid enabled
PSE benefits VO wide resources and makes data and com-
puting intensive experiments feasible. However, a number
of reasons, which include 1) the increasing ambition of the
user on benefiting the Grid computing capacity, 2) the dis-
covery and utilisation of distributed software resources, and
3) the stability of the available Grid resources [30–32], also
require a Grid enabled PSE to have additional features in
its SWMS. One of these demanded features is to handle the
dynamic issues in a workflow, such as the activities of the
human users, the availability of resources, and adaptation
of flow descriptions. A system that supports such enhanced
workflow is called a dynamic SWMS.

Since the 1990s, scientific workflow and its support en-
vironments have become an important subject in the com-
munity of scientific computing; a large number of success-
ful systems have been reported [3, 17, 20, 23, 25]. However,
in most of these systems, the support for dynamic workflow
has not been explicitly addressed or only in a limited extent.
From the flow modelling point of view, data based depen-
dencies are still the most popular mechanism to describe
a workflow, which is straightforward for many data stream
based experiments, but is not sufficient for modelling the in-
teraction dynamics when human is in the loop. Apart from
it, the interpretation mechanism of the engine assumes that
all the dependencies between resources are predefined in a
flow; the runtime adaptation of the flow description is not
supported by most of the engines. When a PSE can only ac-
cess limited computing power, little can be done about these
shortcomings. Since the realisation of the data based inter-
action receives a much higher priority than the support for

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

dynamic workflow, in particular for data and computing in-
tensive applications. In Grid enabled PSEs, facilitating the
existing scientific workflow environment with the support
for dynamic issues becomes an important research issue.

In this paper, we present our work on dynamic work-
flow. The research is carried out in the context of Virtual
Laboratory for e-Science [28]. VLAM-G (Virtual Labora-
tory Amsterdam for Grid) environment [2], a Grid enabled
PSE framework developed in a previous project2, is cur-
rently used as the first prototype. The VLAM-G environ-
ment provides a user friendly interface for managing soft-
ware components and for composing reusable experiment
templates. But the modelling of the runtime experiments is
based on data flow, which has limited concerns for the dy-
namic facts in the flow execution. This paper is organised as
follows. First, we analyse the basic issues of dynamic work-
flow and review the related work. Next, we briefly describe
the current state of the VLAM-G environment and propose
an agent based flow control architecture. After that, we dis-
cuss the implementation issues.

2 Dynamic workflow and related work

In this section, we first analyse the runtime interaction in
a SWMS and summarise the requirements for supporting a
dynamic workflow, then we briefly review related work.

2.1 Runtime dynamics and dynamic workflow

In a PSE, a basic SWMS consists of four components: a
workflow description, the software resources being utilised
in a workflow, an engine orchestrating the system be-
haviour, and a middleware that realise the communication
and binding between resources and between resources and
the engine 3. The interaction dynamics at run time can then
be examined between every two components in the SWMS,
as shown in Fig. 1. We can enumerate a number of desired
supports for the dynamic issues.

Flow composition and adaptation. A flow can be com-
posed with the support of automated discovery and assem-
bling of available resources. At run time, the engine can
adapt the content of a flow to meet the dynamic changes
occurred in the deployed resources.

Between a user and the flow engine. At run time, a user is
allowed to control the progress of the flow execution (VCR
like operations: play, pause, stop, proceed and operations),
to steer the execution of a flow, to interact with the other

2Virtual Laboratory II.
3A workflow description contains not only experiment processes but

also the meta data about the workflow context and the data interfaces. To
simplify the discussion, we here omit optional components such as infor-
mation management from the SWMS.

Resources

Engine

Middleware

Flowcomposition

Execution control

Monitor

Manipulatio
n.

Workflow

Figure 1. Runtime interactions in a SWMS.

users with constraints defined in a flow, and to change or
modify the flow description.

Between the flow engine, the resources and the middle-
ware. Desired supports include discovering software re-
sources and schedule their execution according to the flow
description, migrating computing tasks when it is neces-
sary, e.g., due to the unavailability of computing elements
in Grid, and generating temporal flow description due to the
availability of software resources or computing infrastruc-
ture.

Between a user and the resources. A user is allowed
to monitor the executing of software resources, and mod-
ify the behaviour of a component, e.g., tuning the control
parameters, or interacting with an interactive visualisation
component.

We can clearly see the main characteristics of these sup-
ports: robustness, autonomy, flexibility and adaptability.
This leads to our opinion on the features of a dynamic
SWMS:

1. Support human-in-the-loop interaction. At run
time, a user is allowed not only to interact with the
flow engine and the involved components, but also to
adapt the description of a workflow.

2. Automated resource discovery and mapping. The
mapping between the flow description and the under-
lying software resources needs to be transparent and
automated. At run time, the engine is able to dynami-
cally adapt the description of a workflow or to change
the mapping between the workflow and the resources
according to the states of the resources.

3. Flexible flow execution. The flow engine is able to
adapt the high level execution strategy for orchestrat-
ing a workflow according to the characteristics of the
problem domain or the requirements from the user.

2.2 Related work

The development of a dynamic SWMS is complex and
highly interdisciplinary, not only the modelling of the in-

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

teraction dependencies in a flow is difficult, but also the
realisation of the runtime control between components is
time consuming. A number of research lines can be distin-
guished from the related work of dynamic workflow.

The first line is about the issues of modelling a dynamic
workflow. In the WORLDS environment, Bogia addressed
the importance of local adaptation of particular workflow
instances [5]. Jorgensen proposed to use interaction as the
key framework to model flexible workflow [18]. A mod-
elling language called Workware allows the inclusion of am-
biguities in the models and also the dynamic interpretation
of modelling elements.

The second one is related to the composition of flow. Dy-
namic flow composition has been addressed as an important
support for utilising Grid services [7]. In [6], Bubak dis-
cussed an ontology based search and match mechanism for
discovering and assembling Grid services.

The third one is about the execution strategies of work-
flow. Baggio [4] studied how the scheduling issues im-
proves efficiency of the flow execution; he proposed a guess
and solve technique to explicitly model the uncertain is-
sues in the flow execution. Jin et al., [16] compared the
round robin and load aware scheduling mechanisms; one of
the conclusions is that the load-aware strategy is more suit-
able for the heterogeneous flow environment, and the round
robin scheduling is better in the uniform structure. Load
balance is another issue in the flow execution and manage-
ment. Underlying middleware and the migration tools, such
as Condor [1] and Dynamite [14], provide feasibility to dy-
namically migrate computing tasks.

The fourth line is about the human interaction in the
flow execution. Interacting with a specific component in
the flow, or controlling the progress of the flow execution
using a sort of VCR actions have been included as inher-
ent functionality of a number of flow engine e.g., Taverna
[22] and VLAM-G [2]. It has been realised for almost a
decade that computer supported collaborative working en-
vironments are an efficient mechanism to manage the inter-
action dynamics of organisation activities [11].

The research in this paper benefits the previous work and
focuses on a generic solution to extend existing PSE to sup-
port dynamic workflow. The rest of the paper is organised as
follows. We first give an overview of the research context:
Virtual Laboratory for e-Science, and then propose an agent
based architecture to provide dynamic workflow support.

3 Virtual Laboratory for e-Science and the
VLAM-G environment

3.1 Background

Virtual Laboratory for e-Science (VL-e) is an e-Science
research project in the Netherlands; it aims to realise a Grid

enabled generic framework where scientists from different
domains can share their knowledge and resources, and per-
form domain specific research. Currently, there are six
domains are included: food informatics, medical diagno-
sis and imaging, bio-diversity, bio-informatics, high energy
physics, and tele-science. One of the core ideas is to iden-
tify the common characteristics of scientific experiments in
different domains and abstract the support for these com-
mon issues into a shared framework. VLAM-G, a Grid en-
abled PSE framework developed in the previous project of
VL-e, is currently used as the first prototype of the shared
framework. Fig. 2 shows the basic architecture.

VirtualLab(VLAM -G).

ApplicationLayer

GridLayer

Figure 2. The basic architecture of VL-e.

The VLAM-G environment provides generic services for
managing data and software resources, and for supporting
scientific workflow. Using the VLAM-G environment, a
user is allowed to perform his experiment location indepen-
dently and to utilise Grid resources in his experiment trans-
parently. Apart from it, the VLAM-G framework also in-
tegrates the information management services with the life-
cycle of a scientific experiment [19].

In VLAM-G, the processes, activities based on both reg-
ular lab instruments and on computing tasks 4, of an exper-
iment are explicitly modelled using three types of elements:
physical entities which are the instruments to be used, ac-
tivities to be performed by the scientists, and data elements
which are the input/output of the activities. Using these
building blocks, an experiment is modelled in three levels:
abstract descriptions of the dependencies between experi-
ment processes called Process Flow Templates (PFT)-, in-
stantiations of a template called Studies-, and finally the ac-
tual flow of data analysis and computing activities in a Study
called an Experiment Topology.

Using the GUI provided by the VLAM-G environment,
a domain expert defines PFTs, and a scientist instantiates a
PFT as a Study. The activity steps in a Study give the de-
tails of actual manual laboratory steps in the experiment or
the computing tasks. A set of self-contained software en-
tities, called modules, for performing computing tasks are

4Computing tasks include simulation, visualisation and data analysis.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

described as an Experiment Topology. The VLAM-G envi-
ronment provides a GUI for a scientist to describe a topol-
ogy and to execute it via an engine (also called a Run Time
System (RTS)).

At run time, a topology can be executed on the underly-
ing Grid infrastructure via a resource manager in VLAM-
G. A scientist can have two types of interactions with the
experiment instance: tuning the parameters of a specific
component via the VLAM-G interface, or manipulating a
specific module when it is interact-able. A database infras-
tructure is employed to manage both the static and runtime
information.

3.2 Shortcomings in the VLAM-G runtime envi-
ronment

In the VL-e project, the development of the generic
framework and the research of the domain specific appli-
cations are dependent but they have to be carried out in par-
allel. This is the main reason that the current VLAM-G
framework starts from the most generic model to describe
the constraints between software components: data depen-
dencies. This model is straightforward for the data stream
based experiments, but provides limited support for the dy-
namic issues in the flow control.

In the VL-e project, both the development team of the
generic framework and the scientists from different domains
realise the key role that a SWMS plays in an e-Science en-
vironment. The domain scientists in the VL-e community
have described their requirements on the workflow support
in a detailed wish list [29], which covers different levels of
issues in the workflow support. Based on the wish list, we
enumerate following shortcomings of the current VLAM-G
environment:

1. Limited human interaction support. Human activity
based interaction dependencies are not explicitly mod-
elled in the current PFT model. A user can not steer
the execution of an experiment at run time.

2. Limited adaptability. The execution control of the flow
is not explicit; when a flow instance is submitted, the
relation between modules (components) is fixed. The
user can not modify the content of a topology when it
is running.

3. Limited flexibility. A topology can be executed on
Grid in a transparent way, however limited strategies
are provided to adapt the execution according to the
availability of the resources and the characteristics of
the problem.

Because of these shortcomings, a scientist has to develop
control intelligence inside the components when he wants to

realise a complex scenario for his experiment, which ham-
pers the reusability of both components and the experiment
template. The key issue is that the current VLAM-G has
limited capability for modelling complex workflows and for
supporting the related runtime issues. An enhanced flow
model and a flexible engine are needed. In the next section,
an agent based solution is proposed.

4 An agent based solution: VL-e Workflow
Conductor (VLWF-Conductor)

4.1 Basic idea

A solution is proposed to improve the current VLAM-G
environment with the following functionalities:

1. Extending the data flow based model with capabili-
ties of describing temporal interaction dependencies
between a user and the system components.

2. Distinguishing the control for orchestrating activities
of flow components and for high level execution strate-
gies. These two levels of control are mixed in the cur-
rent VLAM-G environment, which hampers the flexi-
bility for flow execution.

3. Allowing a user not only to interact with the flow en-
gine and the components and but also to adapt its flow
content at run time.

Interaction dependencies can in principle be specified
in a number of ways, e.g., activity diagrams, state charts
and Petri Nets. Because of the well-established theoretical
framework and more importantly the suitability for repre-
senting the common flow patterns [27], a Petri Net based
approach is adopted as the mechanism to extend the current
flow description.

Agent technologies provide a suitable approach to in-
clude control intelligence with the behaviour of a set of op-
erations, therefore, we use them to encapsulate the control
intelligence and to carry out the flow control.

A framework called VL-e Workflow Conductor (VLWF-
Conductor) is proposed. An agent called study manager
controls high level strategies of a scientific experiment. A
number of agents called scenario conductors handle the in-
terpretation of experiment scenarios of a workflow. The
scenario conductors can also wrap different legacy flow en-
gines through specialised interface. Flow description and
the execution strategies are modelled as knowledge in the
agents. The basic architecture of VLWF-Conductor is de-
picted in Fig. 3.

In the rest of this section, we will discuss its particular
features.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

Engine
Study manager

Scenario conductor

Resources

Middleware

Figure 3. The basic architecture of VLWF-
Conductor.

4.2 Agent definition

In our view, an agent is a software component which has
an explicit model of the external world, a reasoning kernel
to make decisions on the activity, and a number of sensors
and effectors to interact with the external world. From a
high level, an agent is an entity to encapsulate certain in-
telligence for behaviour control. At run time, agents can
reside in different machines and can communicate via an
agent framework.

4.3 Flow modelling

The concept of a Petri Net was originally developed by
C. A. Petri in the 1960s. It has been a widely applied for
modelling system behaviour, in particular concurrent activ-
ities. Place transition graphs are a sort of automata that can
handle relations between conditions and the occurrence of
events [9]. Basically, a place transition (PT) graph consists
of three parts: a finite set of places, a finite set of tran-
sitions, and a finite set of relation links between places and
transitions. In our earlier work, we implemented a PT graph
based mechanism called scenario net [34] to model the in-
teraction constraints between components in an interactive
simulation system.

In a scenario net, transitions and places have unique
names. Transitions are used to specify activities or nested
scenario nets. When specifying an activity, a transition con-
tains an action and a role name, in which the role is ex-
pected to perform the action at run time, and the role is also
called the responsible role of the transition. When speci-
fying a nested scenario net, a transition contains the name
of a scenario net and a special action called Do Scenario.
Places and the links between places and their post sets are
used to describe the conditions. A place is optionally asso-
ciated with a set of expressions, named place expressions,
which contain three subsets, for describing the initial con-
ditions, control conditions and the state-modification rules

of the place. Each link between a place and its post set is
optionally associated a set of guard expressions.

A scenario net models the interactions using two types
of dependencies between the roles’ activities. The concur-
rency dependencies between them constitute the first type,
which are represented as the relation links between places
and transitions, and the tokens of the places. The second
type of the dependencies is the specific conditions for each
action, which are represented as the control expressions in
the pre-set of the transition and in the links between the tran-
sition and its pre-set. The execution of a transition updates
the state of the scenario net. The basic rules of the PT graph
handle the concurrency dependencies between the activities
by changing the marking of the net, and the execution rules
for the place expressions update the control conditions for
the activities.

In [33], we have demonstrated the application of sce-
nario nets in modelling scenarios in interactive simulation
systems. In VLWF-Conductor, scenario net is used as the
basic mechanism to model the dynamic workflow.

4.4 Control intelligence encapsulation

In a scenario net, a sub scenario can be nested as a tran-
sition in a higher level scenario. The execution rules of a
scenario role are encapsulated in a scenario conductor. The
scheduling strategies for the flow execution are realised in
the study manager. These scheduling strategies are related
to the specific problem being studied, for instance, for a
parameter studying problem, the study manager schedules
multiple scenario conductors to execute a same scenario but
with different parameters. At run time, a study manager can
create multiple scenario conductors to perform the execu-
tion of different scenarios in parallel.

Another functionality of scenario conductor is to wrap
legacy flow engine. One of the goals of the VLWF-
Conductor is to reuse existing flow engine. Using VLWF-
Conductor, a data flow based description is possible to in-
cluded in the workflow, and be executed by a scenario con-
ductor which interfaces with the existing VLAM-G engine.

4.5 Human in the loop flow execution

Human in the loop flow control is realised at different
levels. In addition to interacting with a specific component,
VLWF-Conductor also allows a human user:

1. to interfere with the study manager to make decisions
on choosing scheduling strategies.

2. to interact with the scenario conductor to steer the ex-
ecution of a scenario net of a flow. In a scenario net,
a place can be associated with a number of user opin-
ions; a user can choose one of these opinions via a user
interface.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

3. to collaborative work with the other users under the
coordination of a scenario conductor.

In this section, we briefly discussed the design consider-
ations of VLWF-Conductor. In the next section, we will put
the VLWF-Conductor in the context of VL-e project and
discuss the integration between it and the VLAM-G envi-
ronment.

5 Implementation state

VLWF-Conductor will be implemented based on the ex-
isting framework of the VLAM-G; it will serve the high
level domain specific applications as the generic support
for managing runtime experiments and studies (see Fig.
2). VLWF-Conductor will be integrated with the VLAM-
G framework at three levels: composition, orchestration,
and resource management. In this section, we will discuss
the integration issues and figure out the relation between
VLWF-Conductor and the other ongoing research in VL-e.

The implementation of VLWF-Conductor is still in its
initial stage. Jade, a FIPA compliant agent framework, is
currently used as the agent environment. The reasoning pro-
cedures for choosing execution strategies and interpreting
scenario net, and the maintenance of the world model are
realised as agent activities, which are invoked periodically
by the agent core. The reasoning module is realised using
Prolog. Jade 3.3 [15] and SWI Prolog 5.4.7 [26] are cur-
rently used. The implementation is based on Java.

The communication between agents is handled by the
Jade runtime environment; and the messages between sce-
nario conductor and the computing resources are handled
by the original Grid middleware of VLAM-G environment.

A workflow is described using a XML schema. A user
friendly tool is under development. At run time, the loca-
tion of the workflow is passed from an experiment manager
to a scenario conductor. The scenario conductor parses the
workflow as Prolog terms, and then applies its interpreta-
tion knowledge to execute it. Using the Jade framework, a
scenario conductor can be instantiated in a local or remote
machine.

6 Discussion and conclusions

In this paper, we reported our work on dynamic work-
flow in the VL-e project. We first discussed the interac-
tion dynamics in a SWMS and the design requirements
for supporting dynamic workflow. And then we analysed
the shortcomings of the current VLAM-G environment and
proposed an agent based solution.

In addition to the basic management services for work-
flow, a dynamic SWMS also has to implement the support
for the dynamic issues. However, when a PSE can only

access limited computing power, the support for dynamic
workflow is often considered as a sort of nice to have fea-
tures compared to the solutions to data storage and pro-
cessing. Apart from it, a uniformed description of Grid re-
sources and flow is required when realising automatic flow
composition. It is unlikely to have a single solution to dy-
namic workflow in the near future.

From the work, we can at least conclude follows:

1. In Grid enabled PSEs, dynamic workflow merges as a
desired support for managing experiment activities and
for orchestrating the system behaviour.

2. The rich semantics of Petri nets can describe the in-
teraction constraints not only from the perspective of
data dependencies, as often used in scientific workflow
systems, e.g., SciRun, Sculf, and GridAnt [3, 17, 23],
but also from the concurrency relations between activ-
ities. It is a suitable paradigm for modelling dynamic
workflow.

3. Agent technologies are a suitable solution to realise the
control intelligence for flow control. Jade provide a
uniformed framework for agent communication. The
Java based implementation makes the integration with
Grid middleware easy.

7 Future work

The development of VLWF-Conductor is still ongoing.
It will be validated by applying test cases from different do-
mains. One of the applications we are currently working on
is the parametric modelling. The basic activities of comput-
ing and result comparison are described as a workflow. The
user is allowed to make decision to optimise the parameter
configuration.

A lesson learned from VLAM-G project is that scien-
tists will not choose a novel architecture simply because it
looks beautiful unless it can work with the existing ones
and provide exciting new features [13]. An important fu-
ture work is to study the mapping schemes between exist-
ing architectures and VLWF-Conductor so that legacy ar-
chitectures can get benefit of the layered integration from
VLWF-Conductor in an easy and efficient way.

References

[1] Process migration. ACM Comput. Surv., 32(3):241–299,
2000.

[2] H. Afsarmanesh, R. Belleman, A. Belloum, A. Benabdelka-
der, J. van den Brand, G. Eijkel, A. Frenkel, C. Garita,
D. Groep, R. Heeren, Z. Hendrikse, L. Hertzberger, J. Kaan-
dorp, E. Kaletas, V. Korkhov, C. de Laat, P. Sloot, D. Va-
sunin, A. Visser, and H. Yakali. VLAM-G: A Grid-based

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

Virtual Laboratory. Scientific Programming: Special Issue
on Grid Computing, 10(2):173–181, 2002.

[3] K. Amin and G. von Laszewski. GridAnt: a
Grid workflow system. In Manual at http://www-
unix.globus.org/cog/projects/gridant/, February 2003.

[4] G. Baggio, J. Wainer, and C. Ellis. Applying scheduling
techniques to minimize the number of late jobs in workflow
systems. In SAC ’04: Proceedings of the 2004 ACM sympo-
sium on Applied computing, pages 1396–1403, New York,
NY, USA, 2004. ACM Press.

[5] D. P. Bogia and S. M. Kaplan. Flexibility and control for
dynamic workflows in the worlds environment. In COCS
’95: Proceedings of conference on Organizational comput-
ing systems, pages 148–159, New York, NY, USA, 1995.
ACM Press.

[6] M. Bubak, T. Gubala, M. Kapalka, M. Malawski, and
K. Rycerz. Grid service registry for workflow composition
framework. In Proceedings of International Conference on
Computational Science, LNCS 3038, pages 34–41. Springer,
June 2004.

[7] D. Caragea and T. Syeda-Mahmood. Semantic api match-
ing for automatic service composition. In WWW Alt. ’04:
Proceedings of the 13th international World Wide Web con-
ference on Alternate track papers & posters, pages 436–437,
New York, NY, USA, 2004. ACM Press.

[8] J. G. Chin, L. R. Leung, K. Schuchardt, and D. Gracio. New
paradigms in problem solving environments for scientific
computing. In Proceedings of the international conference
of Intelligent User Interface, San Francisco, 2002.

[9] L. Czaja. Place/transition Petri net evolutions: recording
ways, analysis and synthesis. Fundam. Inf., 51(1):43–58,
2002.

[10] J. R. R. Efstratios Gallopoulos, Elias Houstis. Computer as
thinker doer: Problem-solving environments for computa-
tional science. IEEE Computational Science and Engineer-
ing, 2:13–23, 1994.

[11] C. S. Ellis. Many groupware products have recently been a
workflow architecture to support dynamic change. SIGOIS
Bull., 15(2):23–27, 1994.

[12] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann; 2nd edition,
2003.

[13] L. O. Hertzberger. Introduction of VLAM-G and VL-E. In
Internal seminar, 2004.

[14] K. A. Iskra, R. G. Belleman, G. D. van Albada, J. Santoso,
P. M. A. Sloot, H. E. Bal, H. J. W. Spoelder, and M. Bubak.
The Polder computing environment, a system for interac-
tive distributed simulation. Concurrency and Computation:
Practice and Experience(Special Issue on Grid Computing
Environments), 14(13–15):1313–1335, 2002.

[15] Jade. Jade agent development framework. In
http://jade.tilab.com/, 2005.

[16] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load bal-
ancing in distributed workflow management system. In SAC
’01: Proceedings of the 2001 ACM symposium on Applied
computing, pages 522–530, New York, NY, USA, 2001.
ACM Press.

[17] C. Johnson, S. Parker, and D. Weinstein. Large-scale com-
putational science applications using the SCIRun problem

solving environment. In Proceedings of Supercomputer,
2000.

[18] H. D. Jorgensen. Interaction as a framework for flexible
workflow modelling. In GROUP ’01: Proceedings of the
2001 International ACM SIGGROUP Conference on Sup-
porting Group Work, pages 32–41. ACM Press, 2001.

[19] E. C. Karletas. Scientific information management in col-
laborative experimentation environments). PhD thesis, Uni-
versiteit van Amsterdam, Amsterdam, NL, (Promoter, Prof.
Dr. L. O. Hertzberger), 2004.

[20] M. Lorch and D. G. Kafura. Symphony - a java-based
composition and manipulation framework for computational
grids. In CCGRID, pages 136–143, 2002.

[21] R. McClatchey and G. Vossen. Workshop on workflow man-
agement in scientific and engineering applicationsreport.
SIGMOD Rec., 26(4):49–53, 1997.

[22] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood,
C. Goble, A. Wipat, P. Li, and T. Carver. Delivering web
service coordination capability to users. In WWW Alt. ’04:
Proceedings of the 13th international World Wide Web con-
ference on Alternate track papers & posters, pages 438–439,
New York, NY, USA, 2004. ACM Press.

[23] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics
Journal., online, June 16, 2004.

[24] M. Peleg, I. Yeh, and R. Altman. Modelling Biological Pro-
cesses using Workflow and Petri Net Models. Bioinformat-
ics, 18(6):825–837, 2002.

[25] M. Romberg. The unicore grid infrastructure. Scientific Pro-
gramming, 10(2):149–157, 2002.

[26] Swi-Prolog. The homepage of swi-prolog. In
http://www.swi-prolog.org/, 2005.

[27] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(3):5–51, 2003.

[28] VL-e. Virtual laboratory for e-science. In http://www.vl-
e.nl/, 2005.

[29] VLAM-G team. VLAM-G and workflow support wish list.
In http://www.vl-e.nl/, 2005.

[30] G. von Laszewski and I. Foster. Grid infrastructure to sup-
port science portals for large scale instruments. In Proceed-
ings of the Workshop Distributed Computing on the Web
(DCW). University of Rostock, Germany, June 1999.

[31] R. Wolski. Experiences with predicting resource perfor-
mance on-line in computational grid settings. SIGMETRICS
Perform. Eval. Rev., 30(4):41–49, 2003.

[32] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu. Towards
efficient resource on-demand in grid computing. SIGOPS
Oper. Syst. Rev., 37(2):37–43, 2003.

[33] Z. Zhao. An agent based architecture for constructing inter-
active simulation systems. PhD thesis, University van Ams-
terdam, Amsterdam, The Netherlands, (Promoter: Prof. Dr.
P. M. A. Sloot), 2004.

[34] Z. Zhao, D. van Albada, and P. Sloot. Agent based flow
control for hla components. Simulation transaction, Special
Issue: Agent directed simulation. (to appear), 2005.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

