
2004 IEEE International Conference on Systems, Man and Cybernetics

Discrete Event Modeling and Simulation: V-Lab@*
Application to Wireless Sensor Networks

Prasanna Sridhar
Department of Electrical and Computer Engineering

The University of New Mexico
Albuquerque, NM, U.S.A.

prasanna@ece.unm.edu

Abstract - The need for modeling and simulation (M&S)
is seen in many diverse applications such as multi-agent
systems, robotics, control systems, s o h a r e engineering,
complex adaptive systems, and homeland securiw. With the
emerging applications of multi-agent systems, there is
always a needfor simulation to veri3 the results before the
actual implementation. Multi-agent simulation provides a
test bed for several soji computing algorithms like fuzzy
logic, neural nehvorks (”), probabilistic reasoning
(Stochastic Learning Automata, Reinforcement leaming),
and evolutionaiy algorithms (Genetic Algorithms). Fusion
of soft computing methodoCogv with existing simulation
tools yields several advantages in simulating multi-agent
systems. Such afusion provides a novel and systematic way
of handling time-dependent parameters in the simulation
without altering the essential functionality and problem-
solving capabilities of soji computing elements. The fusion
here is the extension of the capabilities of simulation tools
with intelligent tools from sop computing. This paper
proposes a methodology for combining the agent-based
archiieciure, discrete eveni system and the so#-compu ting
methods in the simulation of multi-agent systems and
defines a fromework called Virtual Laboratory (KLabB)
for realizing such multi-agent system simulations. Detailed
experimental results obtained from simulation of robotics
agents and wireless sensor network is also discussed.

1 Introduction

1.1 Motivation

Several specialized multi-agent simulation tookits are
available; each of which performs narrow tasks very well.
Typically, the development of these specialized simulation
toolkits depends on the needs and available resources.

*U.S. Government work not protected by U.S.
copyright

MO Jamshidi
Department of Electrical and Computer Engineering

The University of New Mexico
Albuquerque, NM, U.S.A.

bmshidi@ece.unm.edu

Although a general toolkit for simulation of multi-agent
systems cannot compete with a specialized toolkit, the
general toolkit arguably provides several tools that can be
used and reused in several different multi-agent
applications. Such a general purpose simulation driven
design process requires models to be flexible, scalable and
reusable. Furthermore, the whole design process of the
simulation framework should greatly benefit from the
modular model architecture, that is, each system model is a
composition of sub-models that interact in meaningful
fashion. The multiplicity of modeling approaches to be
integrated as well as the different requirements of potential
user groups discourages the development of a unified
modeling and simulation system. Instead of this, we can
rather propose a modeling and simulation framework,
which allows the development of simulation models on
different levels, according to user specific abilities and
goals. Experimenting with the models requires the iterative
and multiple applications of model initializations (e.g.
empirical data input), simulation runs, model analysis
methods, and presentation of results. Combining these time
consuming tasks in a comfortable and transparent way is an
essential requirement of a simulation system.

1.2 Discrete Event Simulation

In the discrete time simulation, the system changes
state only at certain time steps. In most of the cases, these
time slices are the same, which causes the system to change
state at a regulated amount of time. In the discrete event
simulation, the state change is governed by the occurrence
of event or message to the system.
Discrete Event System Specification (DEVS) [I] is a
formalism, which provides a means of specifying the
components of a system in a discrete event simulation. In
DEVS formalism, one must specify Basic Models and how
these models are connected together. These basic models
are called Atomic models and larger models which are
obtained by connecting these atomic blocks in meaningful
fashion are called Coupled models. Each of these atomic
models has inports (to receive external events), outports (to
send events), set of state variables, internal transition,

1711

mailto:prasanna@ece.unm.edu
mailto:bmshidi@ece.unm.edu

extemal transition and time advance functions.
Mathematically it is represented as 7-tuple system:

M = <X, S, Y, Gint, Gext, h, ta> (1)
where X is an input set, S is set of states, Y is set of
outputs, Gint is internal transition function, Gext is external
transition function, h is the output function, and ta is the
time advance function.
The models description (implementation) uses (or discards)
the message in the event to do the computation and delivers
an output message on the outport and makes a state
transition. DEVSJAVA [2], a Java-based implementation
of DEVS formalism can be used to implement these atomic
or coupled models.

1.3 Multi-Agent Simulation

In multi-agent systems, several agents work
simultaneously to achieve a common goal. Agents can
work autonomously or collahoratively. In multi-agent
systems, there is a large amount of information passed
among agents. This information also called a message
contains knowledge which impacts the behavior of other
agents. The message passing or communication protocol
can be either direct or indirect. In direct message passing,
the agents send information or messages directly to other
agents. Here, the sending agent knows or should know the
destination agent’s address. Pure multi-agent system
(MAS) architectures follow indirect message passing. A
message router has the knowledge of other agents, which
sends and receives the information. The message router
understands the request and routes this message to
appropriate agents, which can handle this request.
In the case of multi-agent systems with few agents, the
message router may opt to broadcast the message to all the
agents. In this case, the agents that handle that particular
request, responds to the requestor. Other agents simply
discard the message.
The multi-agent simulation architecture should possess
properties such as,

Modularity: simulation architecture should allow
the user to add or remove modules which affect the
functionality of other modules of the simulation.

Scalability: The impact of an increase in number
of agents in the simulation architeclure on the throughput
of the simulation architecture should be minimal.

Distributive problem solving capability:
Distributing the problem or workload among agents which
can reside on a single computer or on different computers,
ensures a faster way to solve problem.

2 Virtual Laboratory (V-LabO)

The modeling and simulation frameworks offer re-
usability of models that help achieve better productivity,

reduce error, decrease cost and development time, and
simplify things to repeat past success. The models can be
implemented as objects in an object-oriented framework,
which provides several important features such as re-
usability and data encapsulation bdden from public view).
The framework should act as a platform to organize the
models in an accurate and efficient manner in order to
realize any fully coupled system though simulation. Such a
platform is what we call Virtual Laboratory or V-Lab@ [3]
for realizing fully coupled multi-agent system.

I I

Figure 1. Layered Architecture of V-Lab@

OAen the design of distributed simulations
becomes large and complex. Applying a layered pattern
(Refer Figure 1) to the design of a simulation breaks the
simulation into several interconnected layers, each of
which becomes more manageable than the simulation as a
whole. Each layer has a distinct purpose and acts as a
foundation for the layer above it. Furthermore, many
different simulations require the same problems to be
solved and the use of layers dramatically increases the
amount of code that can be reused from simulation to
simulation.
Intelligent DEVS (IDEVS) is the enhancement or
enrichment to DEVS with different soil computing
elements like fuzzy logic, neural networks, genetic
algorithms, and stochastic learning automata.

2.2 Architecture of V-Lab@

The V-LahB environment consists of four distinct
software layers, as Figure 1 illustrates. Each of these layers
fills a specific role in the simulation. The foundation of the
simulation consists of the operating system and the
network code needed to operate the networking hardware,
which in turn allows machines to communicate over a
network. Using this functionality, a middleware such as
the Common Object Request Broker Architecture
(CORBA) [4] acts to solve the problem of how to use the
network to connect different portions of a simulation
together. While middleware provides a useful tool for
software interconnection, it does not provide the
architecture needed to arrange components of a simulation
into discrete structnres. The Discrete Event System
Specification (DEVS) provides this structure. Using the
DEVS environment, V-Lab@ defines an appropriate

1712

structure in which one can organize the elements of DEVS
for a distributed agent based simulation. It separates the
main components into different categories and defues the
logical structure in which they communicate. It also
provides the critical objects needed to control the flow of
time, the flow of messages, and the base class objects
designers will need to create their own V-Lab@ modules.

- SimEav
-(Agent)

Figure 2. V-Lab0 Architecture

3 I-DEVS

Soft computing, also called compufational intelligence,
is a consortium of tools for natural intelligence stemming
from approximate reasoning (fuzzy logic), leaming (neural
networks, stochastic leaming automata), optimization
techniques (genetic algorithms, genetic programming), etc.
Soft computing has been and is being extensively used in
many applications such as robotics, manufacturing
processes, control engineering, economics, software
engineering, etc. We take advantage of simulation tools
available and fuse it with these soft computing paradigms
in a meaningful method to give us an infelligent simulation
tool
Intelligent DEW or IDEVS is fusion of DEVS and soft
computing paradigms. Enhancement or enrichment to
DEVS with different soft computing elements like fuzzy
logic, neural networks, genetic algorithms, and stochastic
leaming automata gives different components of IDEVS
like fuzzy-DEVS [5], NN-DEVS, GA-DEW [5], SLA-
DEVS [6] , respectively. IDEVS provides users sei of
libraries for performing soft computing based simulation.

3.1 Neural Network DEVS

As an example of I-DEVS we consider here, the
Neural Network-DEVS (NN-DEVS) implemented using
Back Propagation Algorithm. Back Propagation Neural
Network (BPNN) is a general Neural Network and it has
been widely used in an abroad area. Back-propagation,
which is also known as the generalized delta rule, is one of
the most popular and widely investigated methods for
training neural networks. It can be implemented in DEVS.

There are two advantages of using Neural Network in
Devs: handling partial lack of system understanding and
creating adaptive models (models that can learn). It is
mainly applied in three-areas [7]:

1. Concurrent simulation, where results of a Neural
Network model are compared with results of a less
realistic but validated common model to avoid a non
expected behavior of the Neural-Net.
2. NN as sub-components of a global model, to model
subsystems that would be hard to model commonly
because of a lack of understanding.
3. Adaptive models, "models that can lea"', according to
an error feedback such model would be able to adapt
runtime to situations that hasn't been taken into account.

Struchrre of BPNN
The most common network topology is multiple layers
with connections only between nodes in neighboring
layers. There are no connections between nodes located in
a common layer. Its structure is presented in Fig. 3, where
the number of hidden layers can be one or more than one.

lW Layer+H* Layerl+H* W2tQtp.d Laye

Figure 3. A Typical Neural Network with 2 Hidden Layers

There are two passes in BPNN:
Pass I: Forward Pass - Present inputs and let the
activations flow until they reach the output layer.
Pass 2: Backward Pass - Error estimates are computed for
each output unit by comparing the actual output (Pass 1)
with the target output. Then, these errors flow fiom the
output layer to the hidden layers. Error estimates are used
to adjust the weights in the hidden layer and the input layer.

The foundation of the back-propagation leaming algorithm
is the nonlinear optimization technique of gradient descent
on *e sum of squared differences between the actual
output in the output nodes and the desired output. The
detail about it can be found in several neural network
books.

Implementation of BPNN in DEVS
A 4 layer BPNN can be implemented in DEVS,
corresponding to the topology of Fig. 3. It is composed of

1713

input, hidden and output models. Each atomic model
includes forward and backward computation (see Figure 4).
It has training and testing phases. You can provide training
data to inputs and set a stopping criterion to get a desired
performance. After the training phase the trained weights
can be used to test data. It can be extended to include more
hidden layers by adding more hidden models. It can also be
decreased to 3 layer BPNN if it is just composed of input
and output models.

r

. . I
. .,"

Figure 4. DEVS Atomic model implementing the 4-Layer
NN

4 Experimental Results

4.1 Multi-agent Robotic Application

The simulation involves robots reaching a goal
position from random initial point avoiding the obstacles.
The obstacle information is defmed in terrain model. The
agents (robots here) navigate with the help of sensors,
infra-red, GPS and compass, each of which are
implemented as DEVS atomic model. The robots do not
have global map information of the terrain, but local
sensory information helps tbe robot to detect obstacles,
accelerate, or decelerate, based on control algorithm in the
controller module. NN-DEVS can be implemented as a
controller module.

Figure 5. 3-D Robotic Simulation

4.2 Wireless Sensor network Application

Wireless sensor networks have been identified as one
of the most important technologies for the Zlst century [SI.
With advancements in MEMS and wireless technology,
small-sized sensors are ready for rapid deployment in
military and commercial applications. However,
development of such small sized, low energy consuming
and information processing entities is still a technical
challenge. Discrete event simulation of a small wireless
sensor network is demonstrated in this paper using DEVS
formalism.

Simulating sensor networks can be done at two levels:
Node module level and network module level. At the node
level, individual sensor nodes are modeled and simulated.
At the network module level, entire sensor networks can be
modeled, with detailed simulation of node placement, self
organization, routing algorithm, and so on. Since each of
the sensor nodes sense the environment using sensors and
perform limited computation, the sensor network can be
simulated as a multi-agent system, where, each individual
nodes of the network are treated as agents performing
autonomous tasks. The DEVS formalism helps us to
model these sensor nodes as agents.

Implementation details
In this research paper, we would like to simulate the node
module level of the sensor networks. Each of the sensor
nodes are implemented as DEVS coupled model wbich
consists of DEVS atomic models coupled together in
meaningful fashion. The atomic models perform the finest
possible functionality of a sensor node. The architectural
view of a sensor node is given in figure 6.

Communication
Module

I Computational Module

I L I

Figure 6. Sensor node

Each of the modules within the sensor node (or agent) is
simulated as DEVS atomic model. The sensor module is
implemented as DEVS atomic model which accept ID,
X-s, Y-s, and distance (d) as inputs. The output of the

1714

sensor block is voltage which is calculated from the
distance input in the look-up tahle. The computational
module computes the appropriate task the sensor node has
been deployed for. In our simulation, computational node,
hold a buffer to send the sensed information to the
communication module. Any input received @om the
communication module is also buffered for routing to other
sensor nodes or agents. The detailed functionality of all the
modules is explained in the next section describing a
sample scenario.

Sample scenario
The scenario is to simulate the communication of a signal
sensed at one sensor node to the processing node involving
multiple hops. In wireless sensor networks, each of the
sensor nodes does not know the existence of other nodes.
In order to simulate a network, we make an assumption that
each node is couple to few other nodes which it can
broadcast the signal to. This assumption can he easily
eliminated by using V-lab@ architecture of having a central
manager (SimMan), which would hold the communication
information. Specifically, SimMan holds a table with the
list of all the nodes and all nodes which each node can
transmit or broadcast the signal to. However, to simulate a
simple scenario, we will not use SimMan and assume that
each node x is coupled to m other nodes for
communication.

A B h

I F
n
I I

Figure 7. Sample sensor network

When a signal is injected at node A, the transmission is
carried to all the nodes B, C and D. Each of these nodes
transmit the signal to node E and F and back to node A
(Refer Figure 7).
Since tbere are multiple copies of message or signal at E
and F, we use message IDS to identify the redundant
message. Any copy of same message appearing at node is
dropped and is not furfher broadcasted,
When the braadcast from B, C and D are received, a signal
is injected at the sensor module of E indicating that a
message has been sensed by the sensor module at E. This
would generate a new message ID. Each of the sensed
messages is put to a sensor buffer in the computational
module and is flagged with a new ID. Any message fiom
the communication module is put in a communication

buffer in the computation module and it retains the same ID
as is broadcasted. Figure 8 gives the second level
architectural view of the sensor node.

Module Module

Computational
Module

Figure 8. Simulating the node modules

5 Conclusions

In this paper we discussed about modular and distributable
framework for multi-agent simulation called V-Lab@, built
on top of DEVS formalism. V-lab@ provides a layered and
modular approach when the simulation becomes large and
complex. As a future work, wireless sensor networks can
be simulated within the V-Lab@ infrastructure.

References

[l] Zeiglar, B. P., Praehofer, H., Kim, T.G., “Theory of
Modeling and Simulation”, Second edition, Academic
Press, Boston, 2000.

[2] Zeiglar, B.P. and Sarjoughian, H., “Introduction to
DEVS Modeling and Simulation with JAVA A Simplified
Approach to HLA-Compliant Distributed Simulations”,
ACIM, httwiinwwacims. arizona. edu

[3] El-Osery, A., I. Burge, M. Jamshidi, et al. “V-Lab@ -
A Distributed Simulation and Modeling Environment for
Robotic Agents - SLA-Based Learning Controllers,” IEEE
Transactions on Systems, Man and Cybemetics, Vol. 32,
No. 6, pp..791-803,2002

[4] The Object Management Group, “CORBA BASICS,”
electronic doc, www.omg.org/gettingstarted/corhafaq.htm

[SI Sridhar, P, Sheikh-Bahaei, S., Xia, S., Jamshidi, M.,
“Multi-agent simulation using Discrete event and soft
computing methodologies“, Intl. conference on Systems,
Man and Cybemetics, IEEE, Washington D.C., 2003.

[6] Jamshidi, M., Sheikh-Bahaei, S., Kitzinger, J.,
Sridhar, P., et al, “A Distributed Intelligent Discrete-Event
Environment for Autonomous Agents Simulation”,

1715

Chapter 11 ,“Applied Simulation” , Kluwer Publications
2003.

[7] Filippi, J-B., Bisgambiglia, P., Delhom, M., ““Nuro-
Devs, an Hybrid Environment to Describe Complex
Systems”, ESS ‘2001 13” European Simulation
Symposium and Exhibition,

[SI Chong, GY., Kumac, S., “Sensor Network.
Evolution, Opportunities, and Challenges”, Invited paper,
Proceedings of the EEE, Vol. 91, No. 8, Aug 2003.

1716

