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Abstract - The need for modeling and simulation (M&S) 
is seen in many diverse applications such as multi-agent 
systems, robotics, control systems, s o h a r e  engineering, 
complex adaptive systems, and homeland securiw. With the 
emerging applications of multi-agent systems, there is 
always a needfor simulation to veri3 the results before the 
actual implementation. Multi-agent simulation provides a 
test bed for several soji computing algorithms like fuzzy 
logic, neural nehvorks (”), probabilistic reasoning 
(Stochastic Learning Automata, Reinforcement leaming), 
and evolutionaiy algorithms (Genetic Algorithms). Fusion 
of soft computing methodoCogv with existing simulation 
tools yields several advantages in simulating multi-agent 
systems. Such afusion provides a novel and systematic way 
of handling time-dependent parameters in the simulation 
without altering the essential functionality and problem- 
solving capabilities of soji computing elements. The fusion 
here is the extension of the capabilities of simulation tools 
with intelligent tools from sop computing. This paper 
proposes a methodology for  combining the agent-based 
archiieciure, discrete eveni system and the so#-compu ting 
methods in the simulation of multi-agent systems and 
defines a fromework called Virtual Laboratory (KLabB) 
for realizing such multi-agent system simulations. Detailed 
experimental results obtained from simulation of robotics 
agents and wireless sensor network is also discussed. 

1 Introduction 

1.1 Motivation 

Several specialized multi-agent simulation tookits are 
available; each of which performs narrow tasks very well. 
Typically, the development of these specialized simulation 
toolkits depends on the needs and available resources. 
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Although a general toolkit for simulation of multi-agent 
systems cannot compete with a specialized toolkit, the 
general toolkit arguably provides several tools that can be 
used and reused in several different multi-agent 
applications. Such a general purpose simulation driven 
design process requires models to be flexible, scalable and 
reusable. Furthermore, the whole design process of the 
simulation framework should greatly benefit from the 
modular model architecture, that is, each system model is a 
composition of sub-models that interact in meaningful 
fashion. The multiplicity of modeling approaches to be 
integrated as well as the different requirements of potential 
user groups discourages the development of a unified 
modeling and simulation system. Instead of this, we can 
rather propose a modeling and simulation framework, 
which allows the development of simulation models on 
different levels, according to user specific abilities and 
goals. Experimenting with the models requires the iterative 
and multiple applications of model initializations (e.g. 
empirical data input), simulation runs, model analysis 
methods, and presentation of results. Combining these time 
consuming tasks in a comfortable and transparent way is an 
essential requirement of a simulation system. 

1.2 Discrete Event Simulation 

In the discrete time simulation, the system changes 
state only at certain time steps. In most of the cases, these 
time slices are the same, which causes the system to change 
state at a regulated amount of time. In the discrete event 
simulation, the state change is governed by the occurrence 
of event or message to the system. 
Discrete Event System Specification (DEVS) [I]  is a 
formalism, which provides a means of specifying the 
components of a system in a discrete event simulation. In 
DEVS formalism, one must specify Basic Models and how 
these models are connected together. These basic models 
are called Atomic models and larger models which are 
obtained by connecting these atomic blocks in meaningful 
fashion are called Coupled models. Each of these atomic 
models has inports (to receive external events), outports (to 
send events), set of state variables, internal transition, 
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extemal transition and time advance functions. 
Mathematically it is represented as 7-tuple system: 

M = <X, S, Y, Gint, Gext, h, ta> (1) 
where X is an input set, S is set of states, Y is set of 
outputs, Gint is internal transition function, Gext is external 
transition function, h is the output function, and ta is the 
time advance function. 
The models description (implementation) uses (or discards) 
the message in the event to do the computation and delivers 
an output message on the outport and makes a state 
transition. DEVSJAVA [2], a Java-based implementation 
of DEVS formalism can be used to implement these atomic 
or coupled models. 

1.3 Multi-Agent Simulation 

In multi-agent systems, several agents work 
simultaneously to achieve a common goal. Agents can 
work autonomously or collahoratively. In multi-agent 
systems, there is a large amount of information passed 
among agents. This information also called a message 
contains knowledge which impacts the behavior of other 
agents. The message passing or communication protocol 
can be either direct or indirect. In direct message passing, 
the agents send information or messages directly to other 
agents. Here, the sending agent knows or should know the 
destination agent’s address. Pure multi-agent system 
(MAS) architectures follow indirect message passing. A 
message router has the knowledge of other agents, which 
sends and receives the information. The message router 
understands the request and routes this message to 
appropriate agents, which can handle this request. 
In the case of multi-agent systems with few agents, the 
message router may opt to broadcast the message to all the 
agents. In this case, the agents that handle that particular 
request, responds to the requestor. Other agents simply 
discard the message. 
The multi-agent simulation architecture should possess 
properties such as, 

Modularity: simulation architecture should allow 
the user to add or remove modules which affect the 
functionality of other modules of the simulation. 

Scalability: The impact of an increase in number 
of agents in the simulation architeclure on the throughput 
of the simulation architecture should be minimal. 

Distributive problem solving capability: 
Distributing the problem or workload among agents which 
can reside on a single computer or on different computers, 
ensures a faster way to solve problem. 

2 Virtual Laboratory (V-LabO) 

The modeling and simulation frameworks offer re- 
usability of models that help achieve better productivity, 

reduce error, decrease cost and development time, and 
simplify things to repeat past success. The models can be 
implemented as objects in an object-oriented framework, 
which provides several important features such as re- 
usability and data encapsulation bdden  from public view). 
The framework should act as a platform to organize the 
models in an accurate and efficient manner in order to 
realize any fully coupled system though simulation. Such a 
platform is what we call Virtual Laboratory or V-Lab@ [3]  
for realizing fully coupled multi-agent system. 

I I 

Figure 1. Layered Architecture of V-Lab@ 

OAen the design of distributed simulations 
becomes large and complex. Applying a layered pattern 
(Refer Figure 1) to the design of a simulation breaks the 
simulation into several interconnected layers, each of 
which becomes more manageable than the simulation as a 
whole. Each layer has a distinct purpose and acts as a 
foundation for the layer above it. Furthermore, many 
different simulations require the same problems to be 
solved and the use of layers dramatically increases the 
amount of code that can be reused from simulation to 
simulation. 
Intelligent DEVS (IDEVS) is the enhancement or 
enrichment to DEVS with different soil computing 
elements like fuzzy logic, neural networks, genetic 
algorithms, and stochastic learning automata. 

2.2 Architecture of V-Lab@ 

The V-LahB environment consists of four distinct 
software layers, as Figure 1 illustrates. Each of these layers 
fills a specific role in the simulation. The foundation of the 
simulation consists of the operating system and the 
network code needed to operate the networking hardware, 
which in turn allows machines to communicate over a 
network. Using this functionality, a middleware such as 
the Common Object Request Broker Architecture 
(CORBA) [4] acts to solve the problem of how to use the 
network to connect different portions of a simulation 
together. While middleware provides a useful tool for 
software interconnection, it does not provide the 
architecture needed to arrange components of a simulation 
into discrete structnres. The Discrete Event System 
Specification (DEVS) provides this structure. Using the 
DEVS environment, V-Lab@ defines an appropriate 
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structure in which one can organize the elements of DEVS 
for a distributed agent based simulation. It separates the 
main components into different categories and defues the 
logical structure in which they communicate. It also 
provides the critical objects needed to control the flow of 
time, the flow of messages, and the base class objects 
designers will need to create their own V-Lab@ modules. 

- SimEav 
-(Agent) 

Figure 2. V-Lab0 Architecture 

3 I-DEVS 

Soft computing, also called compufational intelligence, 
is a consortium of tools for natural intelligence stemming 
from approximate reasoning (fuzzy logic), leaming (neural 
networks, stochastic leaming automata), optimization 
techniques (genetic algorithms, genetic programming), etc. 
Soft computing has been and is being extensively used in 
many applications such as robotics, manufacturing 
processes, control engineering, economics, software 
engineering, etc. We take advantage of simulation tools 
available and fuse it with these soft computing paradigms 
in a meaningful method to give us an infelligent simulation 
tool 
Intelligent DEW or IDEVS is fusion of DEVS and soft 
computing paradigms. Enhancement or enrichment to 
DEVS with different soft computing elements like fuzzy 
logic, neural networks, genetic algorithms, and stochastic 
leaming automata gives different components of IDEVS 
like fuzzy-DEVS [5], NN-DEVS, GA-DEW [5], SLA- 
DEVS [6] ,  respectively. IDEVS provides users sei of 
libraries for performing soft computing based simulation. 

3.1 Neural Network DEVS 

As an example of I-DEVS we consider here, the 
Neural Network-DEVS (NN-DEVS) implemented using 
Back Propagation Algorithm. Back Propagation Neural 
Network (BPNN) is a general Neural Network and it has 
been widely used in an abroad area. Back-propagation, 
which is also known as the generalized delta rule, is one of 
the most popular and widely investigated methods for 
training neural networks. It can be implemented in DEVS. 

There are two advantages of using Neural Network in 
Devs: handling partial lack of system understanding and 
creating adaptive models (models that can learn). It is 
mainly applied in three-areas [7]: 

1. Concurrent simulation, where results of a Neural 
Network model are compared with results of a less 
realistic but validated common model to avoid a non 
expected behavior of the Neural-Net. 
2. NN as sub-components of a global model, to model 
subsystems that would be hard to model commonly 
because of a lack of understanding. 
3. Adaptive models, "models that can lea"', according to 
an error feedback such model would be able to adapt 
runtime to situations that hasn't been taken into account. 

Struchrre of BPNN 
The most common network topology is multiple layers 
with connections only between nodes in neighboring 
layers. There are no connections between nodes located in 
a common layer. Its structure is presented in Fig. 3, where 
the number of hidden layers can be one or more than one. 

lW Layer+H* Layerl+H* W2tQtp.d Laye 

Figure 3. A Typical Neural Network with 2 Hidden Layers 

There are two passes in BPNN: 
Pass I:  Forward Pass - Present inputs and let the 
activations flow until they reach the output layer. 
Pass 2: Backward Pass - Error estimates are computed for 
each output unit by comparing the actual output (Pass 1) 
with the target output. Then, these errors flow fiom the 
output layer to the hidden layers. Error estimates are used 
to adjust the weights in the hidden layer and the input layer. 

The foundation of the back-propagation leaming algorithm 
is the nonlinear optimization technique of gradient descent 
on *e sum of squared differences between the actual 
output in the output nodes and the desired output. The 
detail about it can be found in several neural network 
books. 

Implementation of BPNN in DEVS 
A 4 layer BPNN can be implemented in DEVS, 
corresponding to the topology of Fig. 3. It is composed of 
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input, hidden and output models. Each atomic model 
includes forward and backward computation (see Figure 4). 
It has training and testing phases. You can provide training 
data to inputs and set a stopping criterion to get a desired 
performance. After the training phase the trained weights 
can be used to test data. It can be extended to include more 
hidden layers by adding more hidden models. It can also be 
decreased to 3 layer BPNN if it is just composed of input 
and output models. 

r 

. .  I 
. .," .... .. . ...... .. . 

Figure 4. DEVS Atomic model implementing the 4-Layer 
NN 

4 Experimental Results 

4.1 Multi-agent Robotic Application 

The simulation involves robots reaching a goal 
position from random initial point avoiding the obstacles. 
The obstacle information is defmed in terrain model. The 
agents (robots here) navigate with the help of sensors, 
infra-red, GPS and compass, each of which are 
implemented as DEVS atomic model. The robots do not 
have global map information of the terrain, but local 
sensory information helps tbe robot to detect obstacles, 
accelerate, or decelerate, based on control algorithm in the 
controller module. NN-DEVS can be implemented as a 
controller module. 

Figure 5.  3-D Robotic Simulation 

4.2 Wireless Sensor network Application 

Wireless sensor networks have been identified as one 
of the most important technologies for the Zlst century [SI. 
With advancements in MEMS and wireless technology, 
small-sized sensors are ready for rapid deployment in 
military and commercial applications. However, 
development of such small sized, low energy consuming 
and information processing entities is still a technical 
challenge. Discrete event simulation of a small wireless 
sensor network is demonstrated in this paper using DEVS 
formalism. 

Simulating sensor networks can be done at two levels: 
Node module level and network module level. At the node 
level, individual sensor nodes are modeled and simulated. 
At the network module level, entire sensor networks can be 
modeled, with detailed simulation of node placement, self 
organization, routing algorithm, and so on. Since each of 
the sensor nodes sense the environment using sensors and 
perform limited computation, the sensor network can be 
simulated as a multi-agent system, where, each individual 
nodes of the network are treated as agents performing 
autonomous tasks. The DEVS formalism helps us to 
model these sensor nodes as agents. 

Implementation details 
In this research paper, we would like to simulate the node 
module level of the sensor networks. Each of the sensor 
nodes are implemented as DEVS coupled model wbich 
consists of DEVS atomic models coupled together in 
meaningful fashion. The atomic models perform the finest 
possible functionality of a sensor node. The architectural 
view of a sensor node is given in figure 6. 

Communication 
Module 

I Computational Module 

I L I 

Figure 6. Sensor node 

Each of the modules within the sensor node (or agent) is 
simulated as DEVS atomic model. The sensor module is 
implemented as DEVS atomic model which accept ID, 
X-s, Y-s, and distance (d) as inputs. The output of the 
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sensor block is voltage which is calculated from the 
distance input in the look-up tahle. The computational 
module computes the appropriate task the sensor node has 
been deployed for. In our simulation, computational node, 
hold a buffer to send the sensed information to the 
communication module. Any input received @om the 
communication module is also buffered for routing to other 
sensor nodes or agents. The detailed functionality of all the 
modules is explained in the next section describing a 
sample scenario. 

Sample scenario 
The scenario is to simulate the communication of a signal 
sensed at one sensor node to the processing node involving 
multiple hops. In wireless sensor networks, each of the 
sensor nodes does not know the existence of other nodes. 
In order to simulate a network, we make an assumption that 
each node is couple to few other nodes which it can 
broadcast the signal to. This assumption can he easily 
eliminated by using V-lab@ architecture of having a central 
manager (SimMan), which would hold the communication 
information. Specifically, SimMan holds a table with the 
list of all the nodes and all nodes which each node can 
transmit or broadcast the signal to. However, to simulate a 
simple scenario, we will not use SimMan and assume that 
each node x is coupled to m other nodes for 
communication. 

A B  h 

I F 
n 
I I 

Figure 7. Sample sensor network 

When a signal is injected at node A, the transmission is 
carried to all the nodes B, C and D. Each of these nodes 
transmit the signal to node E and F and back to node A 
(Refer Figure 7). 
Since tbere are multiple copies of message or signal at E 
and F, we use message IDS to identify the redundant 
message. Any copy of same message appearing at node is 
dropped and is not furfher broadcasted, 
When the braadcast from B, C and D are received, a signal 
is injected at the sensor module of E indicating that a 
message has been sensed by the sensor module at E. This 
would generate a new message ID. Each of the sensed 
messages is put to a sensor buffer in the computational 
module and is flagged with a new ID. Any message fiom 
the communication module is put in a communication 

buffer in the computation module and it retains the same ID 
as is broadcasted. Figure 8 gives the second level 
architectural view of the sensor node. 

Module Module 

Computational 
Module 

Figure 8. Simulating the node modules 

5 Conclusions 

In this paper we discussed about modular and distributable 
framework for multi-agent simulation called V-Lab@, built 
on top of DEVS formalism. V-lab@ provides a layered and 
modular approach when the simulation becomes large and 
complex. As a future work, wireless sensor networks can 
be simulated within the V-Lab@ infrastructure. 
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