
ABSTRACT 

This paper addresses a design method of a controller 
for Takagi-Sugeno (TS) fuzzy systems in the presence 
of a time-varying input delay. It is commonly believed 
that the existence of the time delay makes the closed- 
loop stabilization more difficult. The significance of the 
addressed control problem is more emphasized in the 
practical systems such as the virtual laboratory (VL) 
and the chemical processes. In this paper, a new fuzzy- 
model-based control methodology is proposed for con- 
trolling TS fuzzy systems with time-varying input de- 
lay. A new design technique is developed based on the 
Lyapunov-Razumikhin stability theorem. A sufficient 
condition for the asymptotic stability of the TS fuzzy 
systems is formulated in terms of linear matrix inequal- 
ities (LMIs). The derived condition can deal with any 
time-varying input delay within the admissible bound. 
The effectiveness of the proposed controller design tech- 
nique is demonstrated by a numerical simulation. 
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1. INTRODUCTION 

Recently, as the communication systems has been more 
reliable, some attempts have been tried to remotely 
control via communication networks such as the Inter- 
net. Examples include the telerobotic system [17] and 
the virtual laboratory (VL) [6,10]. Since the control 
loops of the remote-control system are closed over com- 
munication networks or field buses, time delay phenom- 
ena inevitably occur. The stability and performance of 
the controlled system are definitely dependent on the 
transmission performance of the communication net- 
works. I t  is well known that the existence of time de- 
lay makes the closed-loop stabilization more difficult. 
Therefore, it is clear that, as the remote-control system 
is generally utilized, it will be more and more impor- 
tant to  take the delays into account in the analysis and 
the design of the control systems. 
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For a few decades, there have been extensive and 
rigorous studied works related to  the delay systems in 
linear control area. References are actually too many 
to cite. To name a few, we only mention the stud- 
ies on the stability of linear system with state de- 
lay [2 ,5]  or with input delay [3, ll] and references 
therein. The consideration of the time-delay in Takagi- 
Sugeno (TS) fuzzy-model-based control is also of con- 
sequence. However, despite the extensive studies pub- 
lished in the fuzzy-model-based control literature to  
date [9,12-141, there are relatively few research results 
about time delay [7,8]. However, all previous works 
did not consider the input delay and are based on the 
Lyapunov-Krasovskii’s stability theorem. Thus it need 
to take into account some supplementary requirements 
on the time-derivative of time delay d( t ) -d ( t )  should 
be smaller than 1. 

Motivated by the above observations, this paper aims 
at  studying the control problem for a class of TS fuzzy 
systems in the presence of time-varying input delay. 
The input delays specially often occur in the remote- 
control system and critically influence on the stability 
and performance of the closed-loop system. This issue 
must also be carefully handled in TS fuzzy systems 
for safety and improved operational performance of the 
nonlinear remote-control systems such as VL. 

This paper proposes some sufficient conditions in 
terms of linear matrix inequalities (LMIs) and a sys- 
tematic design procedure for the fuzzy-model-based 
controller design for a TS fuzzy systems in the pres- 
ence of the time-varying input delay with admissible 
bounds. In order to design the controller that stabilize 
the closed-loop system in the sense of Lyapunov, we 
utilize the Razumikhin stability theory., By adopting 
this stability theory, the restriction of d ( t )  is not nec- 
essary. This is preferable to the Lyapunov-Krasovskii 
approach in case of VL, because the traffic rate in the 
Internet may not satisfy d ( t )  < 1. The iterative convex 
optimization technique is also adopted for the search 
of the maximal bound of the admissible time delay. 

The organization of this paper is as follows: Section 
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Figure 1; Block diagram of the fuzzy-model-based control system in the presence of time delay and uncert 

2 reviews the TS fuzzy system and its basic properties. 
The main results of this paper are discussed and ex- 
plained in Section 3. In Section 4, we include a simple 
example to  verify and visualize the theory and method 
proposed in this paper. To the end, Section 5 concludes 
this paper with some remarks. 

2. TS FUZZY SYSTEMS AND 
PRELIMINARIES 

Consider the TS fuzzy system described by the follow- 
ing fuzzy rules: 

Plant Rules 

Ri : If q ( t )  is I?: and . . . and zn(t) is l?;, 
Then k ( t )  = A&) + Biu(t - d ( t ) ) ,  (1) 

where r>(i = 1,. . . , q, j = 1,. . . , n . )  is the fuzzy set, 
z( t )  E Rn is the state, u(t - d ( t ) )  E Bn is the delayed 
control input, and d ( t )  represents the time-lag satisfy- 
ing 0 < d ( t )  < 7. 

Using the center-average defuzzification, product in- 
ference, and singletone fuzzifier, the global dynamics of 
this TS fuzzy system (1) is described by 

and ri(z3(t)) is the membership value of z3(t )  in r:. 
Some basic properties of p l ( t )  are: 

9 

P Z ( 4 t ) )  1 0 7 -5- P,(Z( t ) )  = 1. (3) 
1-1 

1834 

,intieS. 

Throughout this paper, a state feedback TS / f  ~ uzzy- 
model-based control law is utilized for the stabilization 
of the TS fuzzy system (2). 

Controller Rules 

R' : If zl ( t )  is I'i and . . . and zn(t)  is I 'k,  
Then u(t)  = K,z(t) .  I (4) 

The defuzzified output of the controller rules i 
by 

9 

u(t)  = - 5 - P l ( W K 3 4 t ) .  
i= l  

given 

(5) 

The closed-loop system with ( 2 )  and (5) of reparded 
type is represented as I 

I 

where $(t) is a smooth vector-valued function defined 
in the Banach space C I-., 01. Figure 1 illustrates 
the configuration of the control system under consider- 
ation. 

i 3. MAIN RESULTS 
1 

This section presents some sufficient conditions that 
guarantee the global asymptotic stability of t i e  con- 
trolled TS fuzzy system (6). 

Lemma 1 For given vectors a ,  b and any sydmetrie 
positive definite matrix P of appropriate dimensions, 
the following inequality holds: 

I 
I 

I , 

f 2 a T b  5 aaTPa  + I b T P - ' b ,  (7) CY 
1 
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Remark 1 In Lemma 1, in case of -2aTb < 0,  the 
estimated upper bound is not good and may introduce 
severe conservatism [2]. Nevertheless, the optimiza- 
tion over Q can reduce the entered conservatism. 

The main results on the globally asymptotic stability 
for the closed-loop system (6) is now summarized in the 
following theorem: 

Theorem 1 If there exist a symmetric positive definite 
matrix P ,  and matrices K j ,  and positive scalars al ,  a2 

such that the following LMIs are satisfied: 

then the TSfuzzy system ( 2 )  is robustly globally asymp- 
totically stabilizable by employing controller ( 5 )  with 
the time delay d(t)  satisfying 

0 5 d ( t )  5 T , 
where 

Tij = QAT + AiQ + MFB' + BiMj 

with Q = P-', Mj = KjP-I,  and * denotes the tmns- 
posed elements in the symmetric positions. 

Proof: Choose a Lyapunov functional candidate as 

V ( z ( t ) )  = z ( t )TPz ( t ) .  (11) 
Clearly, V(z( t ) )  is positive definite and radially un- 
bounded. The time derivative of V ( z ( t ) )  of (6) is given 
bY 

V ( z ( t ) )  = k( t )TPz(t)  + z( t )TPk(t)  
4 4  

= r T p i ( z ( t ) ) p j ( z ( t  - d(t)))((Aiz( t )  
i= l  j = 1  

+ BiKjz(t  - d( t ) ) )TPz ( t )  
+ z( t )TP(Aiz( t )  + BiKjz(t - d( t ) ) ) )  . 

(12)  
Note that 

z(t  - d( t ) )  = z ( t )  - r t  x(8)dO 
t-d(t) 

9 9  

= z ( t )  - it T r p k ( e ) p l ( e  - d ( e ) )  
t--d(t) k=l l = l  

X (AkZ(8) + BkKiz(8 + d(0))dO. (13) 

+ alz(e)TPz(e) 

+cu2z(8 - d(0))TPz(O - d(O))dO) . 

1 
Q2 

+ - 2 ( t )TB,  K3 Bk Ki P- ' KTB,TKTB,Tz( t )  

(15)  

Keeping the Razumikhin stability theorem in mind [l], 
and assuming that for any real number 6 > 1, we have 

v(Z(6)) < 6 V ( z ( t ) ) ,  t/O E [t - 2 7 ,  tl . (16)  

Using Schur complement, the following inequalities di- 
rectly follows from LMIs (9) and (10). 

AkP-'A;f 5 QlP- ' ,  B k K ~ P - ' K ~ B ~  5 Q2P-', 
1 = 1 , 2  ..., q. k =  1,2  ,..., q., 

Then, it is not difficult to understand that the right 
side of the above inequality (15)  is less than 

4 4  

-r - r P Z ( W 1 1 3 4 t  - d ( t ) )  
r = l 3 = 1  

x (z( t )T(ATP + PA, + KTBTP + PB,K,)z(t) 
+ 2d(t)z(t)TPB,K3P-'KTBTPz(t) 
+ d(t)6(ai +Qz)z( t )TPz(t))  . (17) 
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From the observation that the right side of (17) is 
monotonically increasing with regards to the time delay 
d( t ) ,  then, if the following nonlinear matrix inequalities 
hold for z ( t )  and for all t 2 0, except at z ( t )  = 0, 

law is assumed as 
7 .  

2 
d ( t )  = -(sin(100t) + I ) ,  

ATP +  PA^ + K ~ T B , T P  + P B ~ K ~  
+ ~ T P B ~ K ~ P - ~ K ~ T B T P  + T ~ ( C X ~  + c~2)P+ < 0 ,  

z = l , 2 1 . . . , q ,  (18) 

then the controlled system (6) is globally asymptoti- 
cally stable in the sense of Lyapunov with admissible 
bound T .  Moreover, from the continuity of the eigen- 
values (18) with respect to  6, there exists a 6 > 1 suf- 
ficiently small such that (18) with b = 1 still hold. 

With some matrix manipulations, we can show that 
(8), immediately implies the global asymptotic stability 
of the controlled system (6). This completes the proof. 

In order to  find the maximum delay 7, the following 
convex optimization algorithm is proposed. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Find a positive definite matrix Q and matrices 
M3 such that the following LMIs are satisfied: 

QAT + A,Q + MTBF + B,M3 < 0 ,  
z , j = l 1 2  ,..., q .  

For Q given in the previous step, find C Y ~ , C Y ~  

and M3 such that the following generalized 
eigenvalue problem (GEVP) P ( T )  has- solu- 

max T subject to  
M,,ori,ora 

‘ - O z Q  * 1 < 0 ,  i , j = 1 , 2  , . . . ,  4 MFBT -Q 

For M3 and a l ,  122 given in the previous step, 
find Q such that P(T)  has solutions. 

Return to  Step 2 until the convergence of r is 
obtained with a desired precision. 

4. ANEXAMPLE I 
In this section, a numerical example is presented for 
illustrating the controller design technique proposed in 
Section 3.. Consider the following TS fuzzy systdms. 

I Plant Rules 
I 

R’: If q ( t )  is about rl,  I 

THEN k ( t )  = Aiz( t )  + B1u(t - d( t ) ) \ ,  
I 
I R2: If q ( t )  is about r2, 

THEN k ( t )  = A z z ( t )  + & ~ ( t  - d( t ) )  , 

where 

1-0.5 0.11 [-1 0.11 I 
1 0 1 A2= 1 0 ’ 1  A1 = 

The membership functions are I 

where 52 = 0.8165. From Theorem 1 and the proposed 
iterative optimization method, we get I 

r0.0171 0.01031 
P =  o.0103 o,oo98 , = 1.3133, a 2  = 0!6620, 

1 
K1 = 1-0.7154 -0.29811 , 
IC2 = 1-0.7155 -0.29801 , 
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Figure 2: The controlled response of the time-varying 
input-delayed TS fuzzy system. 

on network channels such as the Internet, because the 
time delay due to the traffic jam over the Internet may 
randomly varied. 

The simulation result is shown in Fig. 2. For the 
purpose of comparison, the control input is activated 
at  t = 3 sec.. Before the control input is activated, the 
trajectories of the system do not go to  the equilibrium 
of the system. However, after t = 3 sec., the trajecto- 
ries of the controlled system are quickly guided to  the 
origin. From the simulation result, one can see that the 
designed controller can stabilize the TS fuzzy system 
with the input delay. 

5. CONCLUSIONS 

In this paper, the problem of stabilization of the TS 
fuzzy system with time-varying input delay has been 
addressed. In order to design the fuzzy-model-based 
controller, the Lyapunov-Razumikhin stability the- 
orem has been applied. The sufficient condition for 
the stabilization of the closed-loop system has been 
given in terms of the linear matrix inequalities (LMIs). 
The maximal bound of the input delay preserving 
the asymptotic stability has been found by using the 
iterative convex optimization technique. From the 
numerical example has shown us the potential of the 
proposed method for the industrial applications with 
the delay phenomena. 
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