
Design and Implementation of Virtual Laboratories Using Wrapping and Agent 
Techniques 

E H Li, C. R. Dow, I? K Hsu, 'C. M. Lin, and$T C. Huang 
Department of Information Engineering and Computer Science 

Feng Chia Universiw, Taichung, Taiwan 407 
Department of Computer and Communication Engineering, Nan Kai College, Nan Tou, Taiwan 542 

'Department of Electrical Engineering, National Sun Yat-Sen Universiv, Taiwan 804 
{sbmk, crdow, sum 1 @pEuto.iecslfcu.edu.tw 

lcm@nkc. edu. tw, Stck@mail.nsysu,edu. tw 

i- 

4- 

Abstract 

This work designs and implements a virtual laboratory 
that breaks the limits of time and location in traditional 
education under the innovation of network and 
information technology. Since the development of a virtual 
laboratory from scratch is time consuming and costiy, our 
system can be used to wrap an existing CAI tool without 
knowing its source code. The key concept is to use mobile 
ugents as middleware for wrapping. The framework 
consists of three parts: mobile agent execution 
environment, mobile agent, and learning pla form. 
Experimental results demonstrate that the performance of 
our system outperforms a client- server-based virtual 
laboratory in terms of dispatching time. 
Keywords: Mobile agent, virtual laboratory, learning 

technology, wrapper, and design pattern. 

1 Introduction 

Virtual laboratories, virtual course-rooms, virtual 
collaboration rooms, virtual libraries, and virtual private 
offices are categorized into the distance learning 
framework [7]. In general, a traditional laboratory is 
composed of a number of physical instruments and a set 
of software applications. To construct a laboratory with 
these physical instruments is usually very expensive. 
Therefore, virtual instruments or simulation tools can be 
used to construct a virtual laboratory. Currently, various 
simulation tools such as CAVCAD tools are available in 
the market, but most of them are Stand-alone tools. To 
include these stand-alone applications in a virtual 
laboratory and use them via networks, the source code of 
these systems have to be modified to enable the network 
capability. Thus, it is a challenge to reuse the stand-alone 
application for constructing a virtual laboratory without 
even knowing its source code. 

. 

Mobile agent [12] is an emerging technology and has 
the potential for being a convenient structuring technique 
in distributed and Internet applications. The mobile agent 
technique has been used in the design and implementation 
of a virtual laboratory of digital circuit [SI. However, the 
building process of the virtual laboratory was from scratch 
and most functions of the system are implemented in an 
on-demand approach. Thus, it is necessary and interesting 
to provide a framework to help designers in developing 
mobile agent-based virtual laboratory applications. 

This work proposes a framework to solve above 
problems and provides various design patterns as well as 
features for virtual laboratory developers and end-users. In 
our framework, we use wrappers as middleware and 
design various agents to provide interaction and 
collaboration between instructor and learner or leamer and 
leamer in a virtual laboratory. Various existing CAI tools 
or on-line web sites can be incorporated into a vutual 
laboratory. The framework that reuses the existing CAI 
tools and uses design patterns to develop virtual 
laboratories will save both time and resources. 

The rest of the paper is structured as follows. Section 2 
briefly describes the background materials and related 
work. In Section 3, the wrapping concepts and modeIs are 
described. The virtual laboratory agents and design 
patterns are presented in Sections 4 and 5. Implementation 
of virtual laboratories and experimental results are 
presented in Sections 6 and 7, Finally, the conclusions are 
described in Section 8. 

2 Related Work 

There are many research areas related to our work, such 
as e-learning, virtual laboratory, mobile agent, wrapper, 
and software patterns. Based on the equipment and user 
access in each experiment, laboratories can be classified 
into four types [SI, including traditional laboratory, remote 

0-7803-881 9-4/04/$20.00 02004 IEEE. 45 0 



lab [6], micro lab, and macro lab [17]. This section 
introduces some related work of these topics. 

The virtual laboratory proposed by Muzak et al. [ 111 is 
a macro lab, which focuses on the digital computers and is 
based on the client-server computing paradigm. The 
virtual laboratory changes the traditional lecturing method 
into a network enabled lecturing environment. Moreover, 
it focuses on the lecturing only and lacks of some 
important activities such as an assessment system. 
Another virtual laboratory for teaching electric machinery 
proposed by Tzeng and Tien [17] has the reaIistic, 
interactive, and flexible characteristics and is based on 
client-server computing paradigm. When a virtual 
laboratory becomes larger, traffic jam will be caused in 
the environment. Thus, the problems of adaptability and 
scalability of virtuaI laboratories need to be solved. 

The mobile agent techniques [S, IO, 12, 14-16, 181 have 
been widely used in many Intemet applications, Mobile 
agents, characterized by the unique ability to transport 
their state and code with them, migrate among the 
components of a network infrastructure where they 
resume execution. The merits [14] of mobile agents 
include the reduction of the network traffic and latency in 
clientkerver network computing paradigm, autonomy, 
dynamic adaptation, protocol encapsulation, heterogeneity, 
robust performance, and fault tolerance. The mobile agent 
has the unique ability to transport from one system in a 
network to another. When large volumes of multimedia 
data are stored on remote hosts, these data should be 
processed in the locality of the data rather than transferred 
over the network. 

One important problem we face when building a virtual 
laboratory is where to place an extra hnction for a 
stand-aIone learning tool without knowing its source code. 
The wrapper [S, 151 is a technique that provides a 
convenient way to expand upon existing hnctions of an 
application program without modifying its source code. 
Wrappers provide a way to compose applications from 
different parts. The fact that a mobile agent is wrapped 
should be transparent to other mobile agents in the system, 
and potentially to the agent itself. Therefore, the union of 
a mobile agent and a wrapper Iooks just like another 
stationary agent. 

Software patterns [9] have their roots in Christopher 
Alexander's work in the field of building architecture. 
Patterns facilitate reuse of well-established solutions when 
known problems are encountered. The patterns that are 
adapted in the stage of object-oriented design (OOD) are 
called design patterns. Design patterns [I31 are 
reoccun-hg patterns of programming code or components 
software architecture and which have succeeded as 
solutions to past design problems. The purpose is to 
increase the reusability and quality of code and at the 
same time reduces the effort of sofhvare development. 
They are useful in achieving flexible and extensibIe 
design and make future changes and modifications easier. 

There are different pattern formats [3], the minimal format 
contains the following headings or ones dealing with 
similar subject matters, including Name, Problem, 
Context, Forces, and Solution. 

3 Wrapping Concepts and ModeIs 

To integrate existing learning tools for constructing a 
virtual laboratory, wrapping is the key component. From 
the user's perspective, the wrappers are hidden. As shown 
in Fig. 1, a wrapped CAI tool looks like any other 
software applications. However, fiom the system 
perspective, the wrapper is an agent itself. As shown in 
Fig. 2, a wrapper agent consists of two function parts, 
including U 0  interception and Application Programming 
Interface (API). 

Fig. 1 Wrapping Concept for the User Perspective 

X*.l ........-...,....-. .. ... 11 %?R!L .._..._..-....,...... "+.'~., 

WqqxrAgcnl 1 I...," ..-....l.,.,....l "... I ..,._- I ,_...-.._. " l l . 1  .._I.. I, 

Fig. 2 Wrapping Concept for the System Perspective 

U 0  interception is in charge of exposing the fhctions 
of a CAI tool as a set of methods of an object by 
intercepting its VO and commands. Each CAI tool has a 
fixed operation instruction set, such as hot keys, run-time 
parameters, etc. This component gives exact operation 
instructions to the CAI tool and triggers this tool to 
execute the corresponding functions. API is the interface 
for controlling the virtual laboratory. 

Because of the wrapping concept, both adaptability and 
cost-effectiveness are provided in our virtual laboratory 
framework. From the system perspective, the framework 
supports object-oriented programming (OOP) in the 
development of a virtual laboratory and various 
standalone CAI tools can be easily reused in virtual 
laboratory by wrapping. Thus, the cost of time and system 
and educational resources can be reduced effectively. 

The software model, as shown in Fig. 3, consists of four 
layers. The top layer is the application software, such as 
CAI tools. The second layer consists of services and 
user-defined mobile agents which interact with java native 
interface, Windows API, and agent APT. The third layer is 
agent runtime layer which consists of two parts: a core 

45 1 



framework and a set of extensible system management 
components. The primary functions of the core framework 
are initialization and serializatioddeserialization of agents, 
class loading and transfer, agent references, and garbage 
collection. Moreover, it provides core services for 
executing agent including creation, clone, dispatch, 
retraction, deactivation, and activation. The management 
components are cache manager, security manager, and 
persistence manager. At the bottom are the communication 
API and its implementation. _______........________._______________I~~ 

WTLlLIVe  

I CAI Software 3 .', 
%dews API 

Java Nmthre rntcrfacc (JNQ 

ACljvlricr Sofiwm Asarrt Rolu 

Fig. 4 Relationships in a Virtual Laboratory 

In our proposed virtual laboratories, the mobile agent 
techniques are used to construct the virtual laboratories. 
There are three components in our virtual laboratory 
framework, including the mobile agent execution 
environments (WEE) ,  agents, and learning platforms. 
The details of these system components are described in 
our previous work [4-51. 

I Conuhiiiii cation A P I  
Conuncini cati OIL Layer 1 

Fig. 3 Software Model 

4 Virtual Laboratory Agents 

In general, the virtual laboratory world is composed of 
various objects, including roles, hardwarehofhvare, 
network service, and activities. The roles include 
instructors and learners. In the hardwarehofhvare aspect, 
the hardware is the physical experimental equipment, and 
the software includes teaching function, learning function, 
and other functions. Because the virtual laboratory 
evolves from distance learning, it should provide the 
network capabilities and services for different networking 
paradigm. Thus, the instructors and learners can 
communicate with each other through the Internet. 

Various teachinglleaming activities should be contained 
in a virtual laboratory. The relationships among activities, 
software agent, and participant are shown in Fig. 4. 
Learners can also use the demo agent to demonstrate the 
learning procession to the instructor. An instructor can 
guide learners in different levels by using a guide agent. 
The tutoring agent dispatched by the instructor will 
execute a learning tool for learners to cognize the learning 
materiaIs. Instructor and leamers can use a criticizing 
agent to discuss subjects with each other. The assessment 
agent can provide different levels of assessment materials, 
and it can also provide homework for learners to practice. 
The QA agent has some predefined FAQ rules and it will 
reply with the appropriate answers when learners ask 
questions. The monitoring agent can act as the instructor 
to monitor the learner's actions and Ieaming status. 

5 Design Patterns 

Our virtual laboratory components can be classified 
into seven design patterns, including system environment, 
nomadic management, delegation, behavior management, 
agent communication, agent coordination, and auxiliary. 
This classification scheme makes it easier to understand 
the virtual laboratory framework. 
(1) System Environment Pattems: The system 
environment patterns include instructor and learner 
patterns that provide a mobile agent execution 
environment. The class diagram of system environment 
patterns is shown in Fig. 5. The execution environment 
has two types: instructor and learner environments, which 
inherit the environment pattem and provide two 
abstractions, initializeJob and routinelob. 

Fig. 5 System Environment Patterns 

(2) Nomadic Management Pattems: The nomadic 
management patterns can be divided into two types, 
including one-way and round-trip types. The nomadic 
management pattern inherits the Aglets patterns and 
provides three nomadic schemes including sequential, 
parallel, and other schemes, which decide mobile agents' 
itineraries and their navigation among multiple 
destinations. These patterns maintain a list of destinations 
and routing schemes. 

45 2 



(3) Delegation Patterns: The delegating patterns contain 
sequential delegating and parallel delegating patterns, 
which define schemes for mobile agents to complete their 
tasks in sequential or parallel strategies. Moreover, the 
instructor can design a work or experiment that has 
several procedures to deliver to the learners, and let 
learners to complete this work or experiment in a 
sequential order according to the work’s or experiment’s 
content. In other words, these patterns provide 
collaboration models between instructors and learners or 
leamers and leamers. 
(4) Behavior Management Patterns: The behavior patterns 
include cloning, disposing, deactivating, and activating 
operations for mobile agents. We use these behavior 
management pattems when the software agents 
accomplish their tasks. 
(5) Agent Communication Patterns: The agent 
communication pattems include broadcast, multicast, and 
unicast patterns, which define three ways for a mobile 
agent to carry a message to other mobile agents. Software 
agents can establish remote communications by using 
agent communication patterns, which objectify messages 
in the form of agents that carry and deliver messages 
between software agents. 
(6) Agent Coordination Pattems: The agent coordination 
patterns contain direct, blackboard, meeting-oriented, and 
Linda-like pattern, which define coordination schemes 
whereby a master agent can coordinate or exchange 
information with slave agents. The coordination patterns 
are applicable in the following situations: (a) when 
software agents need to interact with other software agents 
with reliabIe and high-bandwidth network connections; (b) 
when software agents need to interact with other software 
agents with unreliable and low-bandwidth network 
connections; and (c) when software agents need to interact 
with other software agents asynchronously. 
(7) Auxiliary Patterns: The auxiliary pattems include GUI, 
visual appearance, agent management, and resource 
management pattems, which define some auxiliary 
functions for mobile agents. The auxiliary patterns are 
applicable in the following situations: (a) when software 
agents need GUI between users and software agents; (bj 
when software agents need some visual objects to 
represent themselves; (c) when users need to manage 
software agents’ information; and (dj when software 
agents need to have interactions between CAI tools and 
software agents. 

6 Implementation of Virtual Laboratories 

Three different virtual laboratories have been designed 
and implemented based on our framework. We have 
implemented our virtual laboratories to several 
applications, including digital circuit, language learning, 
and digital signal processing. In the development of a 
virtual laboratory, the environments and mobile agents are 

constructed based on the design pattems which described 
in previous section. These three different virtual 
laboratories, including Virtual Digital System Laboratory 
(VDSL), Virtual Language Learning Laboratory (V3L), 
and Virtual Digital Signal Processing Laboratory (VDSPL) 
are described below. 
(1) VDSL: The virtual digital system laboratory with 
network capability is created from an existing standalone 
virtual digital system laboratory, which includes a digital 
circuit board and a digital analyzer. By using mobile 
techniques, we enable the network capability of the 
standalone VDSL. In VDSL, the software contains wires, 
instruments, layout tools, and 44 kinds of ICs, and 
learners can practice the design, simulation, debugging, 
and layout. Instructors can dispatch various software 
agents providing by virtual laboratory to monitor, 
broadcast, demo, and cooperate with learners through 
network capability. 
(2) V3L: The virtual language learning laboratory is 
implemented by integrating the mobile agent techniques 
with language learning tool. By using mobiIe agent 
techniques, we enable the network capability of 
standalone language leaming tool. The learning system’s 
main function includes pronunciation practice of noun and 
sentence and conversation practice. In V3L, learners are 
practiced pronouncing by speech recognition system. 
Because of network capability, various mobile agents with 
different tasks, and speech recognition system 
components, V3L improves interaction between 
instructors and learners in traditional class and distance 
leaming environments. 

Fig. 6 V3L 

(3) VDSPL: The virtual digital signal processing 
laboratory is created by using DMATEKs’ TMS30C542 
Evaluation Module (EVM) based on the Texas 
Instruments’ (TI) Code Composer Studio (CCStudio) 
development software. Further we create the network 
capability for the virtual laboratory by integrating mobile 
agent techniques without modifying existing system’s 
source code. Our system is an educational environment in 
learning digital signal processing (DSP). Leamers may 
use this virtual laboratory to learn DSP by a real-time 
multimedia demonstration and discuss with instructors or 
learners through various agents functions. Furthermore, an 

453 



instructor can also monitor and evaluate the results, and 
send it back to a specified learner. 

7 Experimental Results 

In this section, we describe the conducted experiments 
and analyze the performances of mobile agent-based and 
client-server. First, we describe the experimental 
environment and design, Then, we present the 
experimental results and analysis. 

7.1 Experimental Design and Environment 

In our experiments, we used a dedicated cluster of 
seventeen PCs connected through 1 OOMblsec switched 
Ethernet. These network computing paradigms are a 
mobile agent paradigm and a client-server paradigm. We 
consider that the performance is measured by the total 
time required to complete the requests. In mobile 
agent-based scenario, the experiments are designed to 
dispatch mobile agent from the instructor node to learner 
nodes, and the mobile agent’s mission is to carry a demo 
script file to learner nodes fiom an instructor node via a 
network through a closed itinerary. In the client-server 
scenario, each request comes with a destination server. 
The learner nodes specify an instructor node and submit 
its request to the instructor node. We evaluated the effect 
of different network computing paradigms of our system. 
In our experiments, we compare the mobile agent 
paradigm with the traditional client-server paradigm. The 
number of agencies is from 4 to 16. The size of data that 
was carried by the mobile agent has been set to none, 
lOKb, 100Kb, 500Kb and 1Mb. 

In our mobile agent dispatching model, the master 
agent dispatches a cluster of mobile agents one by one. It 
is in fact a serial dispatching model decomposed the agent 
dispatching into several phases, including initialization, 
agent cloning, and agent transferring. Thus, there are three 
time factors for mobile agent-based network paradigm, 
and we define these time factors as follows: 

Ti: Initialization time of a mobile agent system. 
T,: Cloning time of a mobile agent. 
Tt Transmission time of a mobile agent fiom 

source to destination. 
Ti + T, 

$- T, if the length of dispatch path is one. If the length of 
dispatch path is not one, the total time is T = (Ti + T, f Tt) 
* L, where L denotes the length of dispatch path. 

In the client-sever model, the client and server 
programs are treated as fixed agents. The following ate 
two time factors used in the client-server model. 

T,,: The thread time of the server socket accepts a 
client socket. 

T,,,: The message communication time. 

The total time of mobile agent migrating is T 

{ 

The total time cost of client-server transferring is T = T,, 
+ T,. 

7.2 Performance Results 

In the experiments, we evaluated the dispatching time 
vs. data size under different nehvork computing 
paradigms. There are two figures for variant number of 
nodes, as shown in Figs. 6 and 7, with the increase of the 
number and size of mobile agents, the differences are 
rising. However, when the data size is smaller than 500k, 
the performance differences are smaller. When the data 
size is bigger than 500k, the performance difference 
becomes larger. 

Fig. 7 Results for Dispatching 4 Nodes 

Fig. 8 Results for Dispatching 16 Nodes 

Furthermore, with the increasing of number of nodes 
and data size, the performance of the mobile agent 
network computing paradigm is better than that of the 
client-server network computing paradigm. In the 
client-server model, there are typically several flows 
between the client and server. In the mobile agent model, 
these flows can be reduced to a single mobile agent. 
Based on the results, the mobile agent network paradigm 
is a better choice. 

In distance learning, educational resources may be 
requested at the same time and instructors may need to 
dispatch various agents to do some tasks simultaneously. 
Thus, a parallel processing environment may be needed 
and the number of clients may be larger. With the 
improvements of network technology, the response time 
for an individual agent can become shorter and the 
network traffic can be reduced. In comparison, the 
dispatch process may cause the bottleneck and the 

454 



performance of the dispatching model becomes a critical 
factor. In our framework, the mobile agent paradigm 
provides a better solution than the client-server network 
computing paradigm for distance learning. 

8 Conclusions 

In this paper, we design and implement virtual 
laboratories which have the merits of adaptability and 
cost-effectiveness. Our virtual laboratory integrates the 
mobile agent technique and wrapper concept to perform 
software re-engineering. Further, various design patterns 
are formulated for the virtual laboratory development. The 
framework can be used to assist the designers in 
developing virtual laboratories in a formal approach and 
the existing CAI tooIs can be reused without the source 
code of the original programs. In the meantime, various 
software agents have been designed and our virtual 
laboratory has been targeted on various applications, 
including digital circuit, language learning, and digitai 
signal processing. This work focuses on the development 
of virtual laboratories in the Macro University. Plans for 
the future are to integrate our framework with other 
components of the Macro University and to implement 
more related design patterns. Thus, future work is adding 
the knowledge management in these software agents to 
increase their intelligence. Then the teaching/leaming 
environment based on our framework will get more 
intelligence through various software agents with 
knowIedge management fimctions. 

Acknowledgement 

The authors would like to thank the National Science 
Council of the Republic of China for financially 
supporting this research under Contract No. NSC 
92-2213-E-035-016. 

References 

I I ]  S. K, Chang, T. Amdt, S. Levialdi, A. C .  Liu, J. Ma, T. Shih, 
and G Tortora, “Macro University A Framework for a Federation 
of Virtual Universities,” International Journal of Computer 
Processing of Oriental Languages, Vol. 13, No. 3, pp. 205-221, 
2000. 
[21 A. I. Concepcion, J. Ruan, and R. R. Samson, “SPIDER: A 
Multi-agent Architecture for Internet Distributed Computing 
System,” Proceedings of the ISCA 15th International Conference 
on Parallel and Distributed Computing Systems, pp. 147-152, 
September 2002. 
[3] D. Deugo and M.Weiss, “A Case for Mobile Agent Patterns,” 
Proceedings of the Mobile Agents in the Context of Competition 
and Cooperation (MAC3) Workshop Notes, pp. 19-22, May 
1999. 
141 C. R. Dow, F. W. Hsu, T. K. Yang and J. Y. Bai, “A Virtual 
Laboratory for Digital Signal Processing,” Proceedings of 

International Conference on Infomation Technology: Research 
and Education (ITRE ‘2003), pp. 166-170, August 2003. 
[ 5 ]  C. R. Dow, C. Y. Lin, C .  C. Shen, J. H. Lin, and S. C. Chen, 
“A Virtual Laboratory for Macro Universities Using Mobile 
Agent Techniques,” The International Journal of Computer 
Processing of Oriental Languages, Vol. 15, No. 1 ,  pp. 1-18, 
2002. 
[6] F. J. Gomez, M. Cervera, and J. Martinez, “A World Wide 
Web Based Architecture for the Implementation of a Virtual 
Laboratory,” Proceedings of the 26th Euromicro Conference, Vol. 
2, pp. 56-61, September 2000. 
[7] G. Jiang, J. Lan, and X .  Zhuang, “Distance Leaming 
Technologies and an Interactive Multimedia Educational 
System,” Proceedings of the IEEE International Conference on 
Advanced Leaming Technologies, pp. 405-408, August 2001. 
[SI D. Johansen and K. Lauvset, “An Extensible Software 
Architecture for Mobile Components,” Proceedings of the 9th 
Annual IEEE International Conference and Workshop on the 
Engineering of Computer-based Systems, pp. 23 1-237, April 
2002. 
[9] I. Kienzle and A. Romanovsky, “A Framework Based on 
Design Patterns for Providing Persistence in Object-oriented 
Programming Languages,” IEE Software Engineering Joumal, 
Vol. 149, pp, 77-85, June 2002. 
[ IO]  T. Komiya, H. Ohsida, and M. Takizawa, “Mobile Agent 
Model for Distributed Objects Systems,” Proceedings of the 5th 
IEEE International Symposium on Object-Oriented Real-Time 
Distributed Computing, pp. 62-69, April 2002. 
[ 1 I ]  G Muzak, I. Cavrak, and M. Zagar, “The Virtual Laboratory 
Project,” Proceedings of the 22nd Internal Conference on 
Information Technology Interfaces, pp. 241 -246, June 2000. 
1121 M. K. Perdikeas, F. G Chatzipapadopoulos, 1. S .  Venieris, 
and G Marino, “Mobile Agent Standards and Available 
Platforms,” Computer Networks Joumal, Vol. 31, 1999. 
[13] K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. 
Steegmans, and D. Weyns, “Agent Implementation Patterns,” 
Proceedings of the OOPSLA 2602 Workshop on Agent-Oriented 
Methodologies, pp. 119-130, November 2002. 
[ 141 L. M. Silva, G Soares, P. Martins, V. Batista, and L. Santos, 
“Comparing the Performance of Mobile Agent System: A Study 
of Benchmarking,” Computer Communications, Vol. 23, April 
2000. 
[ 151 N. P. Sudmann and D. Johansen, “Supporting Mobile Agent 
Applications Using Wrappers,” Proceedings of the 12nd 
lntemational Workshop on Database and Expert Systems 
Appfications, pp. 689-695, September 2001. 
[I61 W. Suwu and A. Das, “An Agent System Architecture for 
E-commerce,” Proceedings of the IZnd International Workshop 
on Database and Expert Systems Applications, pp. 715-726, 
September 2001. 
[I71 H. W. Tzeng and C. M. Tien, “Design of a Virtual 
Laboratory for Teaching Electric Machinery,” Proceedings of the 
IEEE lntemational Conference on Systems, Man, and 
Cybernetics, Vol. 2, pp. 971-976, October 2000. 
[ 181 Y. Wang, “Dispatching Multiple Mobile Agents in Parallel 
for Visiting E-shops,” Proceedings of the 3th International 
Conference on Mobile Data Management, pp. 61-68, January 
2002. 

455 


