
Dependable Computing in Virtual Laboratories

G. Alonso, W. Bausch, C. Pautasso, A. Kahn M. Hallett
Dept. of Computer Science

Swiss Federal Institute of Technology (ETH)
ETH antrum, CH-8092 Zurich, Switzerland

McGill Centre for Bioinformatics
McGill University
Montreal, Canada

{alonso,bausch,pautasso,kahn}@inf.ethz.ch hallett@cs.mcgill.ca

Abstract̂". * .."*. I . .,
Many scientific disciplines are shifing from in vitro to

in silico research as more physical processes and natural
phenomena are examined in a computer (in silico) instead
of being observed (in vitro). In many of these virtual lab-
oratories, the computations involved are very complex and
long lived. Currently, users are required to manually handle
almost all aspects of such computations, including their de-
pendability. Not surprisingly, this is a major bottleneck and
a significant source of inefficiencies. To address this issue,
we have developed ~BioOpera, an extensible process support
management system f o r virtual laboratories. In this papel;
we briefly discuss the architecture and functionality of Bio-
Opera and show how it can be used to effciently manage
long lived computations.

I MulRNAs8quMaa I
Figure 1. Tower of Information for Computa-
tional Biology

1. Introduction

Virtual laboratories are becoming increasingly pervasive
now that the cost of storing observations is lower than the
cost of making them [1 13. Although these environments are
typically associated with massive amounts of data [15, 20,
211, initial experiences have shown that data processing is
more critical than data storage [6, 191.

To better illustrate the problem, consider the following
exam le. One of the goals of the BioOpera project is to
be abpe to build a software system capable of automatically
predict the secondary structure of a protein from its pri-
mary aminoacid sequence alone. The idea is to construct
a tower of information such as the one depicted in Figure 1.
This tower of information represents a sequence of derived
data sets, each one of them with a higher information con-
tent than its predecessors. The first step consists of locating
genes in the raw DNA and translating these coding regions
into amino acid sequences. The amino acid sequences are
then aligned (i.e., compared) with known proteins and var-
ious statistics are calculated. These intermediate results,
in turn, are used to. build a phylogenetic (or evolutionary)
tree. The trees together with a multiple sequence align-
ment provide the biochemist with a historical perspective
of which evolutionary events have occurred (and been ac-
cepted) in the genomes of the organisms over vast peri-
ods of time. This evolutionary history provides important
clues towards the prediction of secondary structure [171. In
turn, these secondary structural units provide avenues for
the prediction of the acutal structure (or sha e) of the pro-
tein and knowledge of this three-dimensionaf configuration

may lead to accurate assignments of the function of the pro-
tein.

In most existing virtual laboratories, storing, manipu-
lating, and keeping track of computations like the tower
of information is done manually through ad-hoc pieces of
code. The data processing logic is typically written using
conventional programming languages (e.g., C, FORTRAN)
for the basic algorithms and collections of operating sys-
tem scripts (mainly PERL scripts) as the glue between the
different components. Such an approach leads to logic that
is extremely difficult to modify and rather primitive, unsys-
tematic methods for driving and monitoring computations.
When considering that in some studies the tower of infor-
mation will be built several thousand times, it becomes clear
that better software support is needed and that an organized
way to store and manage information about the entire pro-
cedure is critical to the success of the virtual experiment. In
this paper we will concentrate on how to provide this basic
functionality. The core of our efforts is BioOpera, a pro-
cess support system for virtual laboratories in bioinformat-
ics. BioOpera is based on Opera, a workflow-like middle-
ware tool [3] that has evolved into a programming [2] and
runtime environment for cluster computing [14, 81 with the
capability to define, execute, monitor and manage a broad
range of large-scale, complex scientific computations.

The paper is organized as follows. Section 2 presents a
typical virtual experiment. Section 3 briefly describes Bio-
Opera. Section 4 shows how the virtual experiment can be

235
1063-6382/01$10.00 0 2001 IEEE

represented in BioOpera notation. Section 5 discusses the
experimental results. Section 6 concludes the paper.

2. Motivation and Problem Statement

In this paper, we will focus on sequence alignment
[IO, 9, 121. Using a typical data set, e.g., Swiss-Prot
vers. 38 (SP38[4]), the starting point is 80,000 amino acid
sequences. Aligning every entry in SP38 against all other
entries in this dataset - a self-comparison or all vs. all -
requires approximately 3.2 . lo9 individual pairwise align-
ments (certain optimizations can be used to reduce this
figure). As an indication of what this implies, over the
past 7 years, the Computational Biochemistry Research
Group of ETH Zurich has updated (and made public) the
all vs. all comparison of Swiss-Prot vers. 27 [12]. Current
updates typically involve at most 10,000 new sequences
and require 3 to 4 months of computation on a cluster of
16 dual processor nodes. During such computations, the
datasets, software, and workstations involved need to be
painstakingly maintained: nodes fail, algorithms fail, data
entries need to be discarded, jobs restarted, results coa-
lesced, and so on. Today, this is done manually due to the
lack of appropriate tools. Future experiments such as the
tower of information are orders of magnitude more com-
plex than the all vs. all. Clearly, adequate tools are needed
for these efforts to be viable.

The most basic aspect of such tools is to be able to de-
pendably run computations for months at a time with min-
imal user intervention. This requires to automatically and
transparently handle issues such as efficient scheduling of
jobs, load balancing, tracking of progress and results of
the computation, recovery from system errors and machine
crashes, access to intermediate results as they are com-
puted, automatic accounting of statistics concerning com-
puting time, and a systematic method for storing all neces-
sary meta-data.

The first step towards providing this functionality in-
volves finding an appropriate representation for the com-
putation. We have chosen the notion of process, similar to
that used in workflow management systems (although the fi-
nal implementation is rather different since workflow tools
are not entirely adequate for virtual laboratories [16, 71).
A process is an annotated directed graph where the nodes
represent tasks and the arcs represent the control/data flow
between these tasks. Thus, the notion of process allows one
to capture sequences of invocations of computer programs
in a distributed and heterogeneous environment and the cor-
responding data exchanges between these programs. From
here, the process can be encoded in such a way so as to al-
low its efficient storage in a database. Once in a database,
this information is persistent, allowing us to both automati-
cally manage the computation and increase its dependabil-
1ty.

3. BioOpera: a Virtual Laboratory for Bioin-
formatics

3.1. Process Design

A computation in BioOpera is represented as a process.
BioOpera uses a language called Opera Canonical Repre-
sentation (OCR) [141 to describe processes. In OCR, a pro-
cess consists of a set of tasks and a set of data objects. Tasks

can be activities, blocks, or subprocesses, thereby allow-
ing modular design and reuse (e.g., the tower information
is built as a process where every step is a subprocess). The
data objects store the input and output data for the tasks and
are used to pass information around a process.

As an example, Figure 3 depicts a simplified version of
the all vs. all process as it is implemented within BioOpera.
Activities (rectangles in Figure 3) are the basic execution
steps. They correspond to stand alone programs or systems
that can be relied upon to complete one of the computational
steps of the process. Each activity has an extemal binding
that specifies the program to be invoked (not shown in the
figure). This information is used by the runtime system to
launch external applications. Contro1,flow inside a process
is based on control connectors which, formally, are anno-
tated arcs (T , , TT, C A ~ ~) , where Ts is the source task, TT
is the target task, and C A ~ ~ is an activation condition (bold
connecting lines in Figure 3; the figure shows the activa-
tion condition for the control connector (! queue-f i l e)
between tasks user input and queue generation). Each ac-
tivation condition (or activator) defines an execution order
between two tasks and is capable of restricting the execu-
tion of its target task based on the state of data objects,
thereby allowing conditional branching and parallel execu-
tion. D a t a j b w between tasks or processes is also repre-
sented with the help of connectors (shown in Figure 3 as
thin connecting lines). In the simplest form, a process con-
sists of only activities, control and data flow dependencies.
Each task has an input data structure storing its input pa-
rameters and an output data structure storing any return
values (represented as cylinders in Figure 3). The input pa-
rameters of a task can be bound to data items in the global
data area of the process (the whiteboard) or in output struc-
tures of other tasks. When a task starts, these bindings are
analyzed and the necessary values are passed to the task.
After the successful execution of a task, a mapping phase
transfers data from its output structure to the global data
area or to other tasks.

Larger processes are structured using blocks and subpro-
cesses. A block is a named group of tasks. The scope of the
block name is the process in which it is defined. Blocks are
used for modular process design and to implement special-
ized parallel processing language constructs (Alignment in
Figure 3 is a block). In particular, blocks are used to imple-
ment unconventional branching in the flow of control (e.g.,
executing an algorithm on every section of a grid, result-
ing in an activity being applied in parallel to every section
of the grid). Subprocesses are processes which are used as
components in other processes. A subprocess can be seen
as a reference to a process inside of another process. Like
blocks, they allow the hierarchical structuring of complex
processes. Late binding - the subprocess is instantiated only
when it is started - allows dynamic modification of a run-
ning process by offering the ability to change its subpro-
cesses.

In addition to these primitives, OCR also supports ex-
ception handling, event handling, and spheres of atomicity
[1,2]. The combination of these features allows the process
designer to define sophisticated failure handlers as part of
the process [141 (such as undo actions, alternative execu-
tions, and various forms of exception handling).

3.2. Architecture and Basic Functionality

BioOpera can be seen as a high-level distributed operat-
ing system managing the resources of a computer cluster. It

236

cess (graphical representation) 1 (r task I

programming language
used in BioOpera to
represent and manipulate
processes

1 AP1call GUI based
a t param pmpcnics programming tool

ON STARTUP

CALL program(a.e)
MAPa,b.c,d

Actidy 2
GUald: FmUE I

~ ~-

Process (OCR: textualu ACTNlTi' 1
representation) mternal

task

1

2

3

s t a e conditions

ended O n s t a n

runnmg after 1

runntne after 1

n
-0
Process

(persistent
representation in

DB)

4 I inactive I alter 2and 3 L
I I r

I ::: i I 1

L J U

Data layer

Process definition Process execution

Figure 2. Architecture of Opera

has both a runtime component and a development environ-
ment (Figure 2).

The development environment allows users to specify
BioOpera processes (eventually a library of processes and
activities will be provided so that users can run prede-
fined processes without having to define them themselves).
The development environment encompasses three elements:
process creation, library management, and configuration
management. The configuration management allows users
to specify the hardware and software to be used in the exe-
cution of a process (IP addresses, type of OS, CPU specifi-
cations, etc.). This information will be used by the runtime
component to make job placement decisions, for load bal-
ancing, and to deal with failed nodes. The library manage-
ment element allows the definition of the runtime aspects
of activities: program to be invoked, input, output, where
it runs, how to pass arguments, and so on. The library
management element has been designed to allow users with
more computer knowledge to prepare pre-packaged activi-
ties for those users with less computer knowledge. The idea
is to eventually form a library of such activities that can be
distributed with BioOpera. Finally, the process creation el-
ement will allow users to create processes by simply select-
ing activities from the library management element, com-
bining them as individual activities or as part of blocks, and
specifying the flow of control and data among them. Pro-
cess creation will be graphical, with a compiler in charge of
translating the graph into the proper OCR code.

All this information is stored in one of the correspond-
ing data spaces in BioOpera: the template space contains
process templates (processes as defined by the user), the
instance space contains processes currently executing, the

conjguration space contains the information related to sys-
tem configuration, and the data space contains historical in-
formation about all processes already executed, along with
references to external datasets created by the latter.

During execution, a process instance is persistent both
in terms of the data and the state of the execution. This al-
lows BioOpera to resume execution of processes after fail-
ures occur without losing already completed work. The fact
that the process state is persistently stored in a database
also offers significant advantages for monitoring and query-
ing purposes. From the instance space, process execution
is controlled by the navigator. In this sense, OCR acts as
a persistent scripting language interpreted by the naviga-
tor. Once the navigator decides which step(s) to execute
next, the information is passed to the dispatcher which, in
turn, schedules the task and associates it with a processing
node in the cluster and a particular application. If the choice
of assignment is not unique, the node is determined by the
scheduling and load balancing policy in use. The dispatcher
then contacts the program execution client (PEC); this is a
small software component present at each node responsible
for running application programs on behalf of the BioOpera
server. It is written in Java and, thus, it is platform inde-
pendent, allowing BioOpera to work with heterogeneous
nodes. This client also performs additional activities like
monitoring the load at the node and reporting failures to the
BioOpera server. When applications complete a task, re-
sults are returned via the PEC to the activity queue at the
server. The recovery module reads this data and updates the
database so as to keep track of all events that have occurred.
Afterwards? the navigator is given control and looks for the
next activities to execute.

237

Interaction with external applications takes place
through specific interfaces or wrappers. For computational
purposes, we are currently working exclusively with one
software tool, Darwin [131, but any other such system could
be used.

3.3. Monitoring, Scheduling and Load Sharing

Monitoring is an important aspect in long lived compu-
tations as it allows to keep track of the state of the com-
putation and influence its outcome, if necessary. Most in-
formation pertaining to a process and its execution environ-
ment is stored persistently by BioOpera. Beyond task start
times, task finish times and task failures, the system also
stores information regarding the load in each node, node
availability, node failure, node capacity, and other relevant
information regarding the state of the computing environ-
ment. All together, this information allows the creation of
an awareness model [5] which, in turn, allows BioOpera to
react to changes in the computing environment and provides
a very complete view of the computation. This information
is then used to share the load between the different nodes,
to schedule the computation according to machine usage
and availability, to resume the execution of the computation
smoothly when failures occur, and to avoid inconsistencies
in the output data after failures.

3.4. Planning and Dealing with Outages

BioOpera has been designed as a tool to help managing
long lived computations. This implies that, in addition to
the functionality discussed, it also needs to provide support
for planning ahead. This is a key feature when running vir-
tual experiments that may last months and, therefore, are
likely to encounter many different situations (in addition to
failures): the need to upgrade software and hardware, the
replacement of nodes, changes in storage devices, and so
forth.

In this regard, BioOpera has several advantages. Since
the computation is outlined in the process, it is possible to
determine what would happen when a given node is taken
off-line. This gives system administrators a very powerful
tool to perform upgrades and changes to the system as the
computation proceeds while minimizing the impact of the
outages. Thanks to the dynamic scheduling and load bal-
ancing mechanisms, BioOpera is capable of working with
a system that shrinks or grows in size dynamically. It is
even possible (thanks to the late binding approach) to re-
place activities initially intended to run in a given node with
alternative activities running on a different node (even with
a different OS). In our experiments, BioOpera successfully
coped with failures in the entire cluster, with complete net-
work outages, with hardware upgrades of all nodes in the
cluster (e.g., from one to two processors), and with user
driven interruptions of the computation (to let other users
utilize the cluster). In all cases, the computation was suc-
cessfully resumed with minimal or no human intervention.
The fact that all the necessary information is well organized
and stored in a database opens up the opportunity to create
very sophisticated automatic tools for system and compu-
tation administration that go well beyond anything avail-
able today. For instance, if many processes are being run, a
system administrator could ask the system which processes
will be affected if a node or set of nodes is taken off-line.
BioOpera will then use the configuration information and

the process structure to determine whether alternatives exist
and will then re-schedule the processes accordingly.

4. All vs. All in BioOpera

In order to better understand the experiments carried out
and to illustrate the use of processes in BioOpera, in this
section we present the all vs. all proc’ess (Figure 3) . Re-
call that an all vs. all is a self-comparison of all entries
in a certain dataset. The result of the computation will be
the set of all sequence pairs whose similarity scores reach a
user-defined threshold, along with some information about
the characteristics of the pairs. In the following, we will
call such a sequence pair a match. The exact details of how
each activity is computed and the data-structures used are
beyond the scope of this paper. Suffice it to say, we use the
Darwin system [131 as our bioinformatics application. This
software offers a dynamic programming local alignment al-
gorithm which uses the GCB scoring matrices and an affine
gap penalty [12, 181. Except for the two initial tasks in the
process, all other tasks are executed as. Darwin programs.
That is, when an task needs to be executed, BioOpera con-
tacts Darwin at the appropriate machine and instructs it to
execute a particular algorithm on a particular set of inputs.
The tasks in the all vs. all process depicted in Figure 3 are
as follows.

Task “User Input” queries the user for the input param-
eters to the all vs. all process. These parameters consist of a
dataset, a so-called queuejile and the location where results
should be stored. Here our dataset is SwissProt v38 and our
queue file contains the list of entry indexes E C [l, . . . , NI
into the dataset where N = 8 . lo4 for SP38. The purpose
of the queue file is twofold. First, the indexing provided
by the queue file allows BioOpera to discard ill-behaving
sequences and smoothly re-start computation when failures
occur, since only the dataset entries listed in the queue file
take part in the comparison. Second, i t is used by the two
succeeding tasks to control the degree of parallelism during
execution. The queue file is an optional input parameter, its
absence or presence determines which (of the two possible
successor tasks will be executed after this task finished.

Task “Queue Generation” produces a queue file con-
sisting of the complete list of entries in SP38 E =
[l, . . . , NI, if no queue file is provided tiy the user.

Task “Preprocessing” is responsible for preparing the
data for parallel execution by creating a partition P =
{ P I , . . . , Pn} of the entries E in the queue file. This will be
the input to the next task, which is a parallel task.

Block “Alignment” is a parallel task where the inter-
nal activity corresponds to a subprocess. When started, n
of these subprocesses will be run, where subprocess i com-
putes the alignment for each entry in .Pi against SP38 I :
first, afied PAM alignment performs a pairwise alignment
using a fast but inaccurate algorithm, the set of matches
found by the latter being Qi. Second, every match in Qi
is refined in task PAM-param refinement by recalculating
the corresponding alignment using computationally more
expensive but more informative algorithm. We call the re-
sulting set of matches Ri. When all n subprocesses running
within the parallel task finish, all datasets Ri are assembled
into R = { R I , . . . , Rn} which forms the result of the par-
allel task.

I Care was taken to rule out redundant comparisons across different sub-
processes.

238

PAM distance

Figure 3. The all vs. all process as implemented in BioOpera

Task “Merge by Entry #” merges the set of files R,
output of the Alignment Block, into one master file. The
contents of this file are sorted according to the entry number
in the original database.

Task “Merge by PAM Distance” sorts the matches in
R into various files according to PAM distance estimations.

5. Experimental Results

We have performed three different experiments. The
first aimed at finding the optimal granularity level for
parallelization. It consisted of several versions of the
all vs. all process using a smaller database (500 entries)
and different granularity levels. The other two experiments
were the computation of the all vs. all using SP38. One
was run on a cluster shared with other users, and the other
was performed on a cluster exclusively managed by Bio-
Opera. The objectives were to measure the effectiveness of
BioOpera at managing large-scale computations and to test
the system’s long term stability, as well as its ability to cope
with changes in the hardware configuration and various fail-
ures. The failures observed were not injected but part of the
everyday operation of the systems.

5.1. Hardware Environment

The experiments were performed using a combination
of PCs and UNIX workstations linked by an ordinary Eth-
ernet lOOMbit network. The main cluster is comprised of
16 two-processor PCs (500 Mhz, 512 MB main memory)
running RED HAT LINUX ~ 2 . 2 . 1 2 and 1 Sun SparcStation
with 6 CPUs (336 Mhz, 3072 MB main memory) running
Solaris. We refer to this cluster as the linneus cluster. An-
other cluster is a set of 5 Sun Ultra 5 (269 MHz, 192 MB
main memory) running Solaris. We refer to this cluster as
the ik-sun cluster. Finally, the ik-linux cluster is a group
of 8 two-processor PCs (600 Mhz, 5 12 MB main memory)
running RED HAT LINUX v2.2.14.

5.2. Measurements

To evaluate the results of the experiments, several criteria
were used. First, for each activity Ai we measured the time
it took to complete by looking at how long it was active
on a given CPU (CPU time: C P U (A i)) . Let A I , Az , . . .
denote each activity executed during the process and let
R = { A I , Az, . . .} denote the entire process. The CPU
time of a process is the CPU time it took to execute all of its
activities.

239

U)

0
2 4000
p 3000

2000

1000

I *- r

I

1 5 10 20 100 1000

TEU’s

Figure 4. Effects of the granularity level.

The WALL rime measures the absolute time it takes for
the process to complete as the difference between its start-
ing and finishing times. The WALL time depends heav-
ily on the amount of parallelism achieved. In addition, this
measurement provides a good indicator of the effectiveness
of BioOpera as a basic tool for virtual laboratories.

Finally, the relation between the CPU time with respect
to the number of activities in the process (1521) gives a rough
approximation of the time needed per activity and provides
an intuition about the average recovery time.

We also measured BioOpera’s ability to recover from
failures and the time of manual interventions required to
keep the computation going.

5.3. Determining the Optimal Granularity Level

To determine the optimal granularity levels in the
all vs. all computation, we analyzed the overall perfor-
mance (i.e. CPU and WALL times) for varying numbers
of task execution units (TEUs). The dataset used for this
purpose consisted of 500 entries from SP38. These exper-
iments were run on the ik-sun cluster with no other users
or jobs in the cluster. The number of TEUs for these ex-
periments varied between n = 1 (no parallelization), and
n = 500 (each of the 500 one vs. alls is parallelized). Fig-
ure 4 shows our results.

These results indicate several key points. Not surpris-
ingly, the 1 TEU scenario gives the best CPU time but one
of the worst WALL times, due to the lack of parallelism. As
the chart shows from left to right, the CPU time increases,
while the WALL time first decreases and then, with more
than 20 TEUs, again increases. At the other extreme, the
number of TEUs being 500, the CPU time has almost dou-
bled. This is due to the overhead incurred from Darwin

initialization stages, which are repeated 500 times. The in-
creased WALL time also reflects the extra overhead due to
BioOpera scheduling and executing an increased number of
activities.

Our results indicate that the optimal choice for the granu-
larity is 20 TEUs. This is somewhat counter-intuitive since
one might be tempted to conclude that the optimal would
coincide with the number of available: CPUs, which is in
this case 5. To explain this, we split the chart in Fig-
ure 4 into three segments SI = [l, 5) , S2 = [5,20), and
S3 = [20,500]. The explanation for the downward curve
for WALL time in SI is straightforward: as more TEUs are
added, more parallelism can be achieved. The CPU time
increases only slightly since the difference in overhead be-
tween l and 5 TEUs is marginal. For S3, the explanation
is also straightforward. When the granularity becomes ex-
ceedingly fine, the number of alignments per TEU becomes
exceedingly small. Therefore, the overhead both from Bio-
Opera and Darwin significantly increases the overall CPU
and WALL times. The explanation for S 2 is somewhat more
difficult. One would expect that optimal granularity level to
be 5, to coincide with the number of processors, and not our
observed 20. Clearly, the overhead of starting and stopping
Darwin should not be the dominant fiactor in this discrep-
ancy. The explanation for the observed behavior lies in a
well-known scheduling phenomenon. Since TEUs may dif-
fer in size slightly and since the CPU time for TEUs will
always differ, tasks which require all previous tasks to com-
plete (e.g. the final merging task in our all vs. all process)
will not be executed until this “longesf.” TEU is completed.
Hence, the WALL time will be significantly affected. If
the granularity is too coarse, this phenomenon can become
quite large.

A granularity level of 20 implies that each TEU per-
forms approximately 5% (6,250) of the total number of in-
dividual pairwise alignments, (”). If we extrapolate these
results to the full all vs. all of SP38, we would use a gran-
ularity level of 3200. However, since the dataset is larger
(containing 80,000 entries), the initialization cost per TEU
is also much larger. Hence, we set our level of granular-
ity to 512, a multiple of the number of processors avail-
able. This figure lies in the equivalent 5’2 segment for an
all vs. all with 80,000 entries and, thus, should be close to
the optimal.

5.4. The All vs. All (shared cluster)

In the first run of the all vs. all experiment, we tried
to test the ability of BioOpera to cope with the everyday
changes that take place on a shared cluster. We used the ik-
sun (only two nodes) and linneus clusters, with some ma-
chines dedicated to certain tasks. In particular, the slower
ik-sun cluster was responsible for the refinement stages. As
already stated above, both clusters shared a storage device
in the first part of the experiment. Due to problems with
this device, we had to switch to a storage device accessible
from the linneus cluster only, thus implying that the ik-sun
machines were disabled towards the end of the computation.
All activities were run with lowest priority. The computa-
tion lasted from the 17th December I999 until the 25th of
January 2000. Note that the final two days of computation
are not represented in Figure 5.

The overall performance figures are shown in the shared
cluster column of Table 1. From the point of view of a vir-
tual laboratory, the most relevant conclusion from these re-

240

1

Max. # o m S
CPU(S1)
WALL(f-2)
C P U (A)

I

Shared cluster Non-shared cluster
40 16

441d 7h l l m 400d 2h36m
38d 21h 30m 49d 20h 46m
Od20h 41m Od 18h39m

32

24

1 6

Figure 5. Lifecycle 01

Table 1. Results for the two experiments

sults is that the entire process required only 38 days (WALL
time), using up to 40 processors in the first run, and 49 days
using up to 16 processors in the second run (see details in
Section 5.5). Previous manual efforts required significantly
more time (on the order of months) and computed signifi-
cantly less (mere updates of earlier version of SwissProt).
This already proves the benefits of using a system like Bio-
Opera.

Regarding the ability of BioOpera to automate the over-
all procedure, the history of this first computation is sum-
marized in Figure 5. BioOpera jobs were run in nice mode,
giving priority to the other users. Figure 5 contains a num-
ber of event indicators that refer to particular phases of the
execution. The flat line (dark area) indicates how many pro-
cessors were actually available at each point in time and
ranges between 0 and 40. This variation is due to network
failures, system maintenance, and software upgrades. The
rugged line (light area) indicates the number of processors
that were actually computing BioOpera jobs. As indicated
by the figure, the actual computing time is a small fraction
of the total WALL time. This is due to either heavy utiliza-
tion of the cluster by other users (events 1 and 9), or because
of problems during the execution (event 5, where the pro-
cess ran out of storage space). Events 2, 6, 8 and 10 indi-
cate BioOpera server shutdowns, which caused the running
process to terminate. After restart, BioOpera automatically
resumed the computation from where it stopped at server
shutdown. We believe these results accurately reflect what

the all vs. all (first run).

/
NbS

happens in a typical shared computational environment. We
also stress that a major goal of the experiment was to test the
ability of BioOpera to sustain the computation for a long pe-
riod of time in spite of problems and require little manual
attention. In this, BioOpera was quite successful since no
manual intervention was necessary to deal with system or
activity failures.

5.5. The All vs. All (non-shared cluster)
The first experiment proved that BioOpera can run long-

lived computations while coping with the heterogeneity and
continuous changes of shared clusters. In a second exper-
iment we wanted to test the stability of the BioOpera sys-
tem by itself by running the same computation on a non-
shared cluster. This second experiment was run on the ik-
linux cluster from the 31th May until the 27th July 2000.
As shown in Figure 6 the operating system configuration
changed, since from day 35 a second processor was added
to each node. The results show that BioOpera is quite sta-
ble and can effectively use all available resources. In this
run, there were only three events of interest. The first two
were planned network outages that required to suspend the
execution of the process. The third event was an up rade in
the cluster that made an extra processor available for each
machine. Figure 6 clearly shows how once the number of
processors doubled, BioOpera immediately took advantage
of the available CPU power.

6. Conclusions
The experimental results demonstrate that BioOpera is

able to dependably run month long computations with min-
imal user intervention. This is a significant step towards
providing the software infrastructure needed in virtual lab-
oratories. BioOpera also has additional functionality that is
very important in virtual laboratories. For instance, lineage
tracking is done automatically and all dependencies are per-
sistently recorded. This makes it possible for the system

241

L 8 c P VI P 0 w VI w 0 N VI a a N
0 VI 0

(n

n n n n n n n n n $ $ n 5
2

Time (days)

Figure 6. Lifecycle of the all vs. all (second run).

to recompute processes as data or algorithms change. The
ability to suspend and resume a process is also profusely
used to check intermediate results and correct intermediate
data. Given these results and the feedback obtained from
bioinformaticians, we feel BioOpera has a good potential
as a tool for Virtual Laboratories and opens up very inter-
esting and challenging research directions.

References

[I] G. Alonso and C. Hagen. Flexible exception handling in the
opera process support system. In 18th International Confer-
ence on Distributed Computing Systems (ICDCS), Amster-
dam, The Netherlands, 1998.

[2] G. Alonso and C. Hagen. Beyond the black box: Event-
based inter-process communication in process support sys-
tems. In 19th International Conference on Distributed Com-
puting Systems (ICDCS), Austin, Texas, USA, 1999.

[3] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch.
Distributed processing over stand-alone systems and
applications. In Proceedings of the 23rd Interna-
tional Conference on Very Large Data Bases, Athens,
Greece, 26-29 August 1997, pages 575-579, 1997.
Available at http: / / www.inf.ethz.ch/department/lS/iks-
Ipublications.htm1.

[4] A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence data bank and its supplement trEMBL. Nucleic Acids
Research, 27:49-54,1999.

[5] D. Baker, D. Georgakopoulos, H. Schuster, A. R. Cassandra,
and A. Cichocki. Providing customized process and situa-
tion awareness in the collaboration management infrastruc-
ture. CooplS, pages 79-91,1999.

[6] T. Barclay, J. Gray, and D. Slutz. Microsoft Terraserver:
a spatial data warehouse. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of
Data: May 16-18, 2000, Dallas, Texas, 2000.

[7] A. Bonner, A. Shrufi, and S. Rozen. LabFlow-I: A
database benchmark for high-throughput workflow manage-
ment. In Proceedingsof the 5th Int. Conferenceon Extending
Database Technology (EDBT96), Avignon, France, 3 1996.

[8] R. Buyya. High Performance Cluster Computing, Volume 1
and 2. Prentice-Hall, 1999.

[9] G. Cannarozzi, M. Hallett, J. Norberg, ;and X. Zhou. A cross-
comparison of a large gene dataset. Bioinformatics, 16:654-
655,2000.

Comparison of the complete protein sets
of worm and yeast: orthology and divergence. Science,

[IO] S. Chervitz.

282:2022-2028,1998.
[l I] Mining the digital skies. The Economi.st, 1.06.2000.
[I21 G. Gonnet, M. Cohen, and S. Benner. An exhaustive

matching of the entire protein sequence database. Science,

[I31 G. Gonnet, M. Hallett, C. Korostensky, and L. Bemardin.
Darwin version 2.0: An interpreted computer language for
the biosciences. Bioinformatics, 16: 101-103,2000.

[I41 C. Hagen. A Generic Kernel for Reliable Process Support.
PhD thesis, Dissertation ETH Nr. 13 1 14, 1999.

1151 Y. E. loannidis, M. Livny, S . Gupta, and N. Ponnekanti.
ZOO: A desktop experiment management environment. In
Proceedings of the 22nd international Conference on Very
Large Data Bases, September3-6,1996, Mumbai (Bombay),
India, pages 276285,1996.

[I61 J. Meidanis, G. Vossen, and M. Weske. Using workflow
management in DNA sequencing. In Proceedings of the 1st
International Conference on Cooperative Information Sys-
tems (CooplS96) Brussels, Belgium, 6 1996.

[I71 B. Rost and C. Sander. 3'd generation prediction of sec-
ondary structure. In D. M. Webster, editor, Predicting Sec-
ondary Structure. Humana Press, 1998.

[I 81 T. Smith and M. Waterman. Identification of common molec-
ular subsequences. J. Mol. Biol., 147:195-197,1981.

[I91 A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and
R. J. Brunner. Designing and mining multi-terabyte astron-
omy archives: the Sloan Digital Sky Survey. In Proceed-
ings of the 2000 ACM SIGMOD International Conference
on Management of Data: May 14-19, 2000, Dallas, Texas,
volume 29(2), 2000.

[20] J. T. L. Wang, K. Zhang, and D. Shasha. Pattem matching
and pattem discovery in scientific, program, and document
databases. In Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data: May 23-25.
1995, San Jose, California, volume 24(2), 1995.

[21] M. Zemankova and Y. E. Ioannidis. Scientific databases -
state of the art and future directions. In 20th International
Conference on Very Large Data Bases, September 12-15,
1994, Santiago, Chile, pages 752-753,1994.

256:1443-1445,1992.

242

