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Abstract . . ..̂ . . . .". * .." . . ....*. I .  ., 
Many scientific disciplines are shifing from in vitro to 

in silico research as more physical processes and natural 
phenomena are examined in a computer (in silico) instead 
of being observed (in vitro). In many of these virtual lab- 
oratories, the computations involved are very complex and 
long lived. Currently, users are required to manually handle 
almost all aspects of such computations, including their de- 
pendability. Not surprisingly, this is a major bottleneck and 
a significant source of inefficiencies. To address this issue, 
we have developed ~BioOpera, an extensible process support 
management system f o r  virtual laboratories. In this papel; 
we briefly discuss the architecture and functionality of Bio- 
Opera and show how it can be used to effciently manage 
long lived computations. 
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Figure 1. Tower of Information for Computa- 
tional Biology 

1. Introduction 

Virtual laboratories are becoming increasingly pervasive 
now that the cost of storing observations is lower than the 
cost of making them [ 1 13. Although these environments are 
typically associated with massive amounts of data [ 15, 20, 
211, initial experiences have shown that data processing is 
more critical than data storage [6, 191. 

To better illustrate the problem, consider the following 
exam le. One of the goals of the BioOpera project is to 
be abpe to build a software system capable of automatically 
predict the secondary structure of a protein from its pri- 
mary aminoacid sequence alone. The idea is to construct 
a tower of information such as the one depicted in Figure 1. 
This tower of information represents a sequence of derived 
data sets, each one of them with a higher information con- 
tent than its predecessors. The first step consists of locating 
genes in the raw DNA and translating these coding regions 
into amino acid sequences. The amino acid sequences are 
then aligned (i.e., compared) with known proteins and var- 
ious statistics are calculated. These intermediate results, 
in turn, are used to. build a phylogenetic (or evolutionary) 
tree. The trees together with a multiple sequence align- 
ment provide the biochemist with a historical perspective 
of which evolutionary events have occurred (and been ac- 
cepted) in the genomes of the organisms over vast peri- 
ods of time. This evolutionary history provides important 
clues towards the prediction of secondary structure [ 171. In 
turn, these secondary structural units provide avenues for 
the prediction of the acutal structure (or sha e) of the pro- 
tein and knowledge of this three-dimensionaf configuration 

may lead to accurate assignments of the function of the pro- 
tein. 

In most existing virtual laboratories, storing, manipu- 
lating, and keeping track of computations like the tower 
of information is done manually through ad-hoc pieces of 
code. The data processing logic is typically written using 
conventional programming languages (e.g., C, FORTRAN) 
for the basic algorithms and collections of operating sys- 
tem scripts (mainly PERL scripts) as the glue between the 
different components. Such an approach leads to logic that 
is extremely difficult to modify and rather primitive, unsys- 
tematic methods for driving and monitoring computations. 
When considering that in some studies the tower of infor- 
mation will be built several thousand times, it becomes clear 
that better software support is needed and that an organized 
way to store and manage information about the entire pro- 
cedure is critical to the success of the virtual experiment. In 
this paper we will concentrate on how to provide this basic 
functionality. The core of our efforts is BioOpera, a pro- 
cess support system for virtual laboratories in bioinformat- 
ics. BioOpera is based on Opera, a workflow-like middle- 
ware tool [3] that has evolved into a programming [2] and 
runtime environment for cluster computing [ 14, 81 with the 
capability to define, execute, monitor and manage a broad 
range of large-scale, complex scientific computations. 

The paper is organized as follows. Section 2 presents a 
typical virtual experiment. Section 3 briefly describes Bio- 
Opera. Section 4 shows how the virtual experiment can be 
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represented in BioOpera notation. Section 5 discusses the 
experimental results. Section 6 concludes the paper. 

2. Motivation and Problem Statement 

In this paper, we will focus on sequence alignment 
[ IO,  9, 121. Using a typical data set, e.g., Swiss-Prot 
vers. 38 (SP38[4]), the starting point is 80,000 amino acid 
sequences. Aligning every entry in SP38 against all other 
entries in this dataset - a self-comparison or all vs. all - 
requires approximately 3.2 . lo9 individual pairwise align- 
ments (certain optimizations can be used to reduce this 
figure). As an indication of what this implies, over the 
past 7 years, the Computational Biochemistry Research 
Group of ETH Zurich has updated (and made public) the 
all vs. all comparison of Swiss-Prot vers. 27 [12]. Current 
updates typically involve at most 10,000 new sequences 
and require 3 to 4 months of computation on a cluster of 
16 dual processor nodes. During such computations, the 
datasets, software, and workstations involved need to be 
painstakingly maintained: nodes fail, algorithms fail, data 
entries need to be discarded, jobs restarted, results coa- 
lesced, and so on. Today, this is done manually due to the 
lack of appropriate tools. Future experiments such as the 
tower of information are orders of magnitude more com- 
plex than the all vs. all.  Clearly, adequate tools are needed 
for these efforts to be viable. 

The most basic aspect of such tools is to be able to de- 
pendably run computations for months at a time with min- 
imal user intervention. This requires to automatically and 
transparently handle issues such as efficient scheduling of 
jobs, load balancing, tracking of progress and results of 
the computation, recovery from system errors and machine 
crashes, access to intermediate results as they are com- 
puted, automatic accounting of statistics concerning com- 
puting time, and a systematic method for storing all neces- 
sary meta-data. 

The first step towards providing this functionality in- 
volves finding an appropriate representation for the com- 
putation. We have chosen the notion of process, similar to 
that used in workflow management systems (although the fi- 
nal implementation is rather different since workflow tools 
are not entirely adequate for virtual laboratories [16, 71). 
A process is an annotated directed graph where the nodes 
represent tasks and the arcs represent the control/data flow 
between these tasks. Thus, the notion of process allows one 
to capture sequences of invocations of computer programs 
in a distributed and heterogeneous environment and the cor- 
responding data exchanges between these programs. From 
here, the process can be encoded in such a way so as to al- 
low its efficient storage in a database. Once in a database, 
this information is persistent, allowing us to both automati- 
cally manage the computation and increase its dependabil- 
1ty. 

3. BioOpera: a Virtual Laboratory for Bioin- 
formatics 

3.1. Process Design 

A computation in BioOpera is represented as a process. 
BioOpera uses a language called Opera Canonical Repre- 
sentation (OCR) [ 141 to describe processes. In OCR, a pro- 
cess consists of a set of tasks and a set of data objects. Tasks 

can be activities, blocks, or subprocesses, thereby allow- 
ing modular design and reuse (e.g., the tower information 
is built as a process where every step is a subprocess). The 
data objects store the input and output data for the tasks and 
are used to pass information around a process. 

As an example, Figure 3 depicts a simplified version of 
the all vs. all process as it is implemented within BioOpera. 
Activities (rectangles in Figure 3) are the basic execution 
steps. They correspond to stand alone programs or systems 
that can be relied upon to complete one of the computational 
steps of the process. Each activity has an extemal binding 
that specifies the program to be invoked (not shown in the 
figure). This information is used by the runtime system to 
launch external applications. Contro1,flow inside a process 
is based on control connectors which, formally, are anno- 
tated arcs ( T , ,  TT, C A ~ ~ ) ,  where Ts is the source task, TT 
is the target task, and C A ~ ~  is an activation condition (bold 
connecting lines in Figure 3; the figure shows the activa- 
tion condition for the control connector ( ! queue-f i l e )  
between tasks user input and queue generation). Each ac- 
tivation condition (or activator) defines an execution order 
between two tasks and is capable of restricting the execu- 
tion of its target task based on the state of data objects, 
thereby allowing conditional branching and parallel execu- 
tion. D a t a j b w  between tasks or processes is also repre- 
sented with the help of connectors (shown in Figure 3 as 
thin connecting lines). In the simplest form, a process con- 
sists of only activities, control and data flow dependencies. 
Each task has an input data structure storing its input pa- 
rameters and an output data structure storing any return 
values (represented as cylinders in Figure 3). The input pa- 
rameters of a task can be bound to data items in the global 
data area of the process (the whiteboard) or in output struc- 
tures of other tasks. When a task starts, these bindings are 
analyzed and the necessary values are passed to the task. 
After the successful execution of a task, a mapping phase 
transfers data from its output structure to the global data 
area or to other tasks. 

Larger processes are structured using blocks and subpro- 
cesses. A block is a named group of tasks. The scope of the 
block name is the process in which it is defined. Blocks are 
used for modular process design and to implement special- 
ized parallel processing language constructs (Alignment in 
Figure 3 is a block). In particular, blocks are used to imple- 
ment unconventional branching in the flow of control (e.g., 
executing an algorithm on every section of a grid, result- 
ing in an activity being applied in parallel to every section 
of the grid). Subprocesses are processes which are used as 
components in other processes. A subprocess can be seen 
as a reference to a process inside of another process. Like 
blocks, they allow the hierarchical structuring of complex 
processes. Late binding - the subprocess is instantiated only 
when it is started - allows dynamic modification of a run- 
ning process by offering the ability to change its subpro- 
cesses. 

In addition to these primitives, OCR also supports ex- 
ception handling, event handling, and spheres of atomicity 
[ 1,2]. The combination of these features allows the process 
designer to define sophisticated failure handlers as part of 
the process [ 141 (such as undo actions, alternative execu- 
tions, and various forms of exception handling). 

3.2. Architecture and Basic Functionality 

BioOpera can be seen as a high-level distributed operat- 
ing system managing the resources of a computer cluster. It 
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Figure 2. Architecture of Opera 

has both a runtime component and a development environ- 
ment (Figure 2). 

The development environment allows users to specify 
BioOpera processes (eventually a library of processes and 
activities will be provided so that users can run prede- 
fined processes without having to define them themselves). 
The development environment encompasses three elements: 
process creation, library management, and configuration 
management. The configuration management allows users 
to specify the hardware and software to be used in the exe- 
cution of a process (IP addresses, type of OS, CPU specifi- 
cations, etc.). This information will be used by the runtime 
component to make job placement decisions, for load bal- 
ancing, and to deal with failed nodes. The library manage- 
ment element allows the definition of the runtime aspects 
of activities: program to be invoked, input, output, where 
it runs, how to pass arguments, and so on. The library 
management element has been designed to allow users with 
more computer knowledge to prepare pre-packaged activi- 
ties for those users with less computer knowledge. The idea 
is to eventually form a library of such activities that can be 
distributed with BioOpera. Finally, the process creation el- 
ement will allow users to create processes by simply select- 
ing activities from the library management element, com- 
bining them as individual activities or as part of blocks, and 
specifying the flow of control and data among them. Pro- 
cess creation will be graphical, with a compiler in charge of 
translating the graph into the proper OCR code. 

All this information is stored in one of the correspond- 
ing data spaces in BioOpera: the template space contains 
process templates (processes as defined by the user), the 
instance space contains processes currently executing, the 

conjguration space contains the information related to sys- 
tem configuration, and the data space contains historical in- 
formation about all processes already executed, along with 
references to external datasets created by the latter. 

During execution, a process instance is persistent both 
in terms of the data and the state of the execution. This al- 
lows BioOpera to resume execution of processes after fail- 
ures occur without losing already completed work. The fact 
that the process state is persistently stored in a database 
also offers significant advantages for monitoring and query- 
ing purposes. From the instance space, process execution 
is controlled by the navigator. In this sense, OCR acts as 
a persistent scripting language interpreted by the naviga- 
tor. Once the navigator decides which step(s) to execute 
next, the information is passed to the dispatcher which, in 
turn, schedules the task and associates it with a processing 
node in the cluster and a particular application. If the choice 
of assignment is not unique, the node is determined by the 
scheduling and load balancing policy in use. The dispatcher 
then contacts the program execution client (PEC); this is a 
small software component present at each node responsible 
for running application programs on behalf of the BioOpera 
server. It is written in Java and, thus, it is platform inde- 
pendent, allowing BioOpera to work with heterogeneous 
nodes. This client also performs additional activities like 
monitoring the load at the node and reporting failures to the 
BioOpera server. When applications complete a task, re- 
sults are returned via the PEC to the activity queue at the 
server. The recovery module reads this data and updates the 
database so as to keep track of all events that have occurred. 
Afterwards? the navigator is given control and looks for the 
next activities to execute. 
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Interaction with external applications takes place 
through specific interfaces or wrappers. For computational 
purposes, we are currently working exclusively with one 
software tool, Darwin [ 131, but any other such system could 
be used. 

3.3. Monitoring, Scheduling and Load Sharing 

Monitoring is an important aspect in long lived compu- 
tations as it allows to keep track of the state of the com- 
putation and influence its outcome, if necessary. Most in- 
formation pertaining to a process and its execution environ- 
ment is stored persistently by BioOpera. Beyond task start 
times, task finish times and task failures, the system also 
stores information regarding the load in each node, node 
availability, node failure, node capacity, and other relevant 
information regarding the state of the computing environ- 
ment. All together, this information allows the creation of 
an awareness model [ 5 ]  which, in turn, allows BioOpera to 
react to changes in the computing environment and provides 
a very complete view of the computation. This information 
is then used to share the load between the different nodes, 
to schedule the computation according to machine usage 
and availability, to resume the execution of the computation 
smoothly when failures occur, and to avoid inconsistencies 
in the output data after failures. 

3.4. Planning and Dealing with Outages 

BioOpera has been designed as a tool to help managing 
long lived computations. This implies that, in addition to 
the functionality discussed, it also needs to provide support 
for planning ahead. This is a key feature when running vir- 
tual experiments that may last months and, therefore, are 
likely to encounter many different situations (in addition to 
failures): the need to upgrade software and hardware, the 
replacement of nodes, changes in storage devices, and so 
forth. 

In this regard, BioOpera has several advantages. Since 
the computation is outlined in the process, it is possible to 
determine what would happen when a given node is taken 
off-line. This gives system administrators a very powerful 
tool to perform upgrades and changes to the system as the 
computation proceeds while minimizing the impact of the 
outages. Thanks to the dynamic scheduling and load bal- 
ancing mechanisms, BioOpera is capable of working with 
a system that shrinks or grows in size dynamically. It is 
even possible (thanks to the late binding approach) to re- 
place activities initially intended to run in a given node with 
alternative activities running on a different node (even with 
a different OS). In our experiments, BioOpera successfully 
coped with failures in the entire cluster, with complete net- 
work outages, with hardware upgrades of all nodes in the 
cluster (e.g., from one to two processors), and with user 
driven interruptions of the computation (to let other users 
utilize the cluster). In all cases, the computation was suc- 
cessfully resumed with minimal or no human intervention. 
The fact that all the necessary information is well organized 
and stored in a database opens up the opportunity to create 
very sophisticated automatic tools for system and compu- 
tation administration that go well beyond anything avail- 
able today. For instance, if many processes are being run, a 
system administrator could ask the system which processes 
will be affected if a node or set of nodes is taken off-line. 
BioOpera will then use the configuration information and 

the process structure to determine whether alternatives exist 
and will then re-schedule the processes accordingly. 

4. All vs. All in BioOpera 

In order to better understand the experiments carried out 
and to illustrate the use of processes in BioOpera, in this 
section we present the all vs. all proc’ess (Figure 3) .  Re- 
call that an all vs. all is a self-comparison of all entries 
in a certain dataset. The result of the computation will be 
the set of all sequence pairs whose similarity scores reach a 
user-defined threshold, along with some information about 
the characteristics of the pairs. In the following, we will 
call such a sequence pair a match. The exact details of how 
each activity is computed and the data-structures used are 
beyond the scope of this paper. Suffice it to say, we use the 
Darwin system [ 131 as our bioinformatics application. This 
software offers a dynamic programming local alignment al- 
gorithm which uses the GCB scoring matrices and an affine 
gap penalty [12, 181. Except for the two initial tasks in the 
process, all other tasks are executed as. Darwin programs. 
That is, when an task needs to be executed, BioOpera con- 
tacts Darwin at the appropriate machine and instructs it to 
execute a particular algorithm on a particular set of inputs. 
The tasks in the all vs. all process depicted in Figure 3 are 
as follows. 

Task “User Input” queries the user for the input param- 
eters to the all vs. all process. These parameters consist of a 
dataset, a so-called queuejile and the location where results 
should be stored. Here our dataset is SwissProt v38 and our 
queue file contains the list of entry indexes E C [l, . . . , NI 
into the dataset where N = 8 . lo4 for SP38. The purpose 
of the queue file is twofold. First, the indexing provided 
by the queue file allows BioOpera to discard ill-behaving 
sequences and smoothly re-start computation when failures 
occur, since only the dataset entries listed in the queue file 
take part in the comparison. Second, i t  is used by the two 
succeeding tasks to control the degree of parallelism during 
execution. The queue file is an optional input parameter, its 
absence or presence determines which (of the two possible 
successor tasks will be executed after this task finished. 

Task “Queue Generation” produces a queue file con- 
sisting of the complete list of entries in SP38 E = 
[l, . . . , NI,  if no queue file is provided tiy the user. 

Task “Preprocessing” is responsible for preparing the 
data for parallel execution by creating a partition P = 
{ P I , .  . . , Pn} of the entries E in the queue file. This will be 
the input to the next task, which is a parallel task. 

Block “Alignment” is a parallel task where the inter- 
nal activity corresponds to a subprocess. When started, n 
of these subprocesses will be run, where subprocess i com- 
putes the alignment for each entry in .Pi against SP38 I :  
first, afied PAM alignment performs a pairwise alignment 
using a fast but inaccurate algorithm, the set of matches 
found by the latter being Qi. Second, every match in Qi 
is refined in task PAM-param refinement by recalculating 
the corresponding alignment using computationally more 
expensive but more informative algorithm. We call the re- 
sulting set of matches Ri. When all n subprocesses running 
within the parallel task finish, all datasets Ri are assembled 
into R = { R I ,  . . . , Rn} which forms the result of the par- 
allel task. 

I Care was taken to rule out redundant comparisons across different sub- 
processes. 
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PAM distance 

Figure 3. The all vs. all process as implemented in BioOpera 

Task “Merge by Entry #” merges the set of files R, 
output of the Alignment Block, into one master file. The 
contents of this file are sorted according to the entry number 
in the original database. 

Task “Merge by PAM Distance” sorts the matches in 
R into various files according to PAM distance estimations. 

5. Experimental Results 

We have performed three different experiments. The 
first aimed at finding the optimal granularity level for 
parallelization. It consisted of several versions of the 
all vs. all process using a smaller database (500 entries) 
and different granularity levels. The other two experiments 
were the computation of the all vs. all using SP38. One 
was run on a cluster shared with other users, and the other 
was performed on a cluster exclusively managed by Bio- 
Opera. The objectives were to measure the effectiveness of 
BioOpera at managing large-scale computations and to test 
the system’s long term stability, as well as its ability to cope 
with changes in the hardware configuration and various fail- 
ures. The failures observed were not injected but part of the 
everyday operation of the systems. 

5.1. Hardware Environment 

The experiments were performed using a combination 
of PCs and UNIX workstations linked by an ordinary Eth- 
ernet lOOMbit network. The main cluster is comprised of 
16 two-processor PCs (500 Mhz, 512 MB main memory) 
running RED HAT LINUX ~ 2 . 2 . 1 2  and 1 Sun SparcStation 
with 6 CPUs (336 Mhz, 3072 MB main memory) running 
Solaris. We refer to this cluster as the linneus cluster. An- 
other cluster is a set of 5 Sun Ultra 5 (269 MHz, 192 MB 
main memory) running Solaris. We refer to this cluster as 
the ik-sun cluster. Finally, the ik-linux cluster is a group 
of 8 two-processor PCs (600 Mhz, 5 12 MB main memory) 
running RED HAT LINUX v2.2.14. 

5.2. Measurements 

To evaluate the results of the experiments, several criteria 
were used. First, for each activity Ai we measured the time 
it took to complete by looking at how long it was active 
on a given CPU (CPU time: C P U ( A i ) ) .  Let A I ,  Az ,  . . . 
denote each activity executed during the process and let 
R = { A I ,  Az,  . . .} denote the entire process. The CPU 
time of a process is the CPU time it took to execute all of its 
activities. 

239 



U) 

0 
2 4000 
p 3000 

2000 

1000 

I *- r 

I 

1 5 10 20 100 1000 

# TEU’s 

Figure 4. Effects of the granularity level. 

The WALL rime measures the absolute time it takes for 
the process to complete as the difference between its start- 
ing and finishing times. The WALL time depends heav- 
ily on the amount of parallelism achieved. In addition, this 
measurement provides a good indicator of the effectiveness 
of BioOpera as a basic tool for virtual laboratories. 

Finally, the relation between the CPU time with respect 
to the number of activities in the process (1521) gives a rough 
approximation of the time needed per activity and provides 
an intuition about the average recovery time. 

We also measured BioOpera’s ability to recover from 
failures and the time of manual interventions required to 
keep the computation going. 

5.3. Determining the Optimal Granularity Level 

To determine the optimal granularity levels in the 
all vs. all computation, we analyzed the overall perfor- 
mance (i.e. CPU and WALL times) for varying numbers 
of task execution units (TEUs). The dataset used for this 
purpose consisted of 500 entries from SP38. These exper- 
iments were run on the ik-sun cluster with no other users 
or jobs in the cluster. The number of TEUs for these ex- 
periments varied between n = 1 (no parallelization), and 
n = 500 (each of the 500 one vs. alls is parallelized). Fig- 
ure 4 shows our results. 

These results indicate several key points. Not surpris- 
ingly, the 1 TEU scenario gives the best CPU time but one 
of the worst WALL times, due to the lack of parallelism. As 
the chart shows from left to right, the CPU time increases, 
while the WALL time first decreases and then, with more 
than 20 TEUs, again increases. At the other extreme, the 
number of TEUs being 500, the CPU time has almost dou- 
bled. This is due to the overhead incurred from Darwin 

initialization stages, which are repeated 500 times. The in- 
creased WALL time also reflects the extra overhead due to 
BioOpera scheduling and executing an increased number of 
activities. 

Our results indicate that the optimal choice for the granu- 
larity is 20 TEUs. This is somewhat counter-intuitive since 
one might be tempted to conclude that the optimal would 
coincide with the number of available: CPUs, which is in 
this case 5. To explain this, we split the chart in Fig- 
ure 4 into three segments SI = [l, 5) ,  S2 = [5,20), and 
S3 = [20,500]. The explanation for the downward curve 
for WALL time in SI is straightforward: as more TEUs are 
added, more parallelism can be achieved. The CPU time 
increases only slightly since the difference in overhead be- 
tween l and 5 TEUs is marginal. For S3, the explanation 
is also straightforward. When the granularity becomes ex- 
ceedingly fine, the number of alignments per TEU becomes 
exceedingly small. Therefore, the overhead both from Bio- 
Opera and Darwin significantly increases the overall CPU 
and WALL times. The explanation for S 2  is somewhat more 
difficult. One would expect that optimal granularity level to 
be 5, to coincide with the number of processors, and not our 
observed 20. Clearly, the overhead of starting and stopping 
Darwin should not be the dominant fiactor in this discrep- 
ancy. The explanation for the observed behavior lies in a 
well-known scheduling phenomenon. Since TEUs may dif- 
fer in size slightly and since the CPU time for TEUs will 
always differ, tasks which require all previous tasks to com- 
plete (e.g. the final merging task in our all vs. all process) 
will not be executed until this “longesf.” TEU is completed. 
Hence, the WALL time will be significantly affected. If 
the granularity is too coarse, this phenomenon can become 
quite large. 

A granularity level of 20 implies that each TEU per- 
forms approximately 5% (6,250) of the total number of in- 
dividual pairwise alignments, (”). If we extrapolate these 
results to the full all vs. all of SP38, we would use a gran- 
ularity level of 3200. However, since the dataset is larger 
(containing 80,000 entries), the initialization cost per TEU 
is also much larger. Hence, we set our level of granular- 
ity to 512, a multiple of the number of processors avail- 
able. This figure lies in the equivalent 5’2 segment for an 
all vs. all with 80,000 entries and, thus, should be close to 
the optimal. 

5.4. The All vs. All (shared cluster) 

In the first run of the all vs. all experiment, we tried 
to test the ability of BioOpera to cope with the everyday 
changes that take place on a shared cluster. We used the ik- 
sun (only two nodes) and linneus clusters, with some ma- 
chines dedicated to certain tasks. In particular, the slower 
ik-sun cluster was responsible for the refinement stages. As 
already stated above, both clusters shared a storage device 
in the first part of the experiment. Due to problems with 
this device, we had to switch to a storage device accessible 
from the linneus cluster only, thus implying that the ik-sun 
machines were disabled towards the end of the computation. 
All activities were run with lowest priority. The computa- 
tion lasted from the 17th December I999 until the 25th of 
January 2000. Note that the final two days of computation 
are not represented in Figure 5. 

The overall performance figures are shown in the shared 
cluster column of Table 1. From the point of view of a vir- 
tual laboratory, the most relevant conclusion from these re- 
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Table 1. Results for the two experiments 

sults is that the entire process required only 38 days (WALL 
time), using up to 40 processors in the first run, and 49 days 
using up to 16 processors in the second run (see details in 
Section 5.5). Previous manual efforts required significantly 
more time (on the order of months) and computed signifi- 
cantly less (mere updates of earlier version of SwissProt). 
This already proves the benefits of using a system like Bio- 
Opera. 

Regarding the ability of BioOpera to automate the over- 
all procedure, the history of this first computation is sum- 
marized in Figure 5. BioOpera jobs were run in nice mode, 
giving priority to the other users. Figure 5 contains a num- 
ber of event indicators that refer to particular phases of the 
execution. The flat line (dark area) indicates how many pro- 
cessors were actually available at each point in time and 
ranges between 0 and 40. This variation is due to network 
failures, system maintenance, and software upgrades. The 
rugged line (light area) indicates the number of processors 
that were actually computing BioOpera jobs. As indicated 
by the figure, the actual computing time is a small fraction 
of the total WALL time. This is due to either heavy utiliza- 
tion of the cluster by other users (events 1 and 9), or because 
of problems during the execution (event 5, where the pro- 
cess ran out of storage space). Events 2, 6, 8 and 10 indi- 
cate BioOpera server shutdowns, which caused the running 
process to terminate. After restart, BioOpera automatically 
resumed the computation from where it stopped at server 
shutdown. We believe these results accurately reflect what 

the all vs. all (first run). 

/ 
NbS 

happens in a typical shared computational environment. We 
also stress that a major goal of the experiment was to test the 
ability of BioOpera to sustain the computation for a long pe- 
riod of time in spite of problems and require little manual 
attention. In this, BioOpera was quite successful since no 
manual intervention was necessary to deal with system or 
activity failures. 

5.5. The All vs. All (non-shared cluster) 
The first experiment proved that BioOpera can run long- 

lived computations while coping with the heterogeneity and 
continuous changes of shared clusters. In a second exper- 
iment we wanted to test the stability of the BioOpera sys- 
tem by itself by running the same computation on a non- 
shared cluster. This second experiment was run on the ik- 
linux cluster from the 31th May until the 27th July 2000. 
As shown in Figure 6 the operating system configuration 
changed, since from day 35 a second processor was added 
to each node. The results show that BioOpera is quite sta- 
ble and can effectively use all available resources. In this 
run, there were only three events of interest. The first two 
were planned network outages that required to suspend the 
execution of the process. The third event was an up rade in 
the cluster that made an extra processor available for each 
machine. Figure 6 clearly shows how once the number of 
processors doubled, BioOpera immediately took advantage 
of the available CPU power. 

6. Conclusions 
The experimental results demonstrate that BioOpera is 

able to dependably run month long computations with min- 
imal user intervention. This is a significant step towards 
providing the software infrastructure needed in virtual lab- 
oratories. BioOpera also has additional functionality that is 
very important in virtual laboratories. For instance, lineage 
tracking is done automatically and all dependencies are per- 
sistently recorded. This makes it possible for the system 
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Figure 6. Lifecycle of the all vs. all (second run). 

to recompute processes as data or algorithms change. The 
ability to  suspend and resume a process is  also profusely 
used to check intermediate results and correct intermediate 
data. Given these results and the feedback obtained from 
bioinformaticians, we feel BioOpera has a good potential 
as a tool for Virtual Laboratories and opens up very inter- 
esting and challenging research directions. 
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