
IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002 791

V-Lab—A Virtual Laboratory for Autonomous
Agents—SLA-Based Learning Controllers
Aly I. El-Osery, Member, IEEE, John Burge, Mo Jamshidi, Fellow, IEEE, Antony Saba,

Madjid Fathi, Senior Member, IEEE, and Mohammad-R. Akbarzadeh-T., Senior Member, IEEE

Abstract—In this paper, we present the use of stochastic learning
automata (SLA) in mutliagent robotics. In order to fully utilize and
implement learning control algorithms in the control of multia-
gent robotics, an environment for simulation has to be first created.
A virtual laboratory for simulation of autonomous agents, called
V-Lab is described. The V-Lab architecture can incorporate var-
ious models of the environment as well as the agent being trained.
A case study to demonstrate the use of SLA is presented.

Index Terms—Reinforcement learning, robotic agents stochastic
learning automata (SLA), V-Lab.

I. INTRODUCTION

T HE PAST century has seen an evolution in the way man
envisions robotics, from the earlier mechanical devices

performing purely repetitive tasks to their more recent com-
puter controlled and more intelligent counterparts. Even though
several issues in robotics such as kinematics, dynamics, and
control of manipulator arms in known environment seem to
have reached a relative level of maturity, several new issues
and applications have risen in the past several years which
deal with increased need for autonomy and intelligence of
robots, increased uncertainty in robot environments, and in-
creased complexity in coordinating robot-to-robot interaction
and cooperation.

Applications of the multiagent architecture are many.
Some of the earlier applications of multiagent collaboration
and coordination were in part-assembly where two or more
robots worked to assemble two or more pieces of hardware.
Human-like robot hands were an example of several ma-
nipulator arms (fingers) cooperating in order to handle an
ill-defined object. More recent applications have included
self-healing minefields and formation flying of multiple air
vehicles or satellites. For migrating birds, the formation flying

Manuscript received November 15, 2001; revised March 1, 2002. This work
was supported by NASA Grant NAG2-1547. This paper was recommended by
Guest Editors M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis.

A. I. El-Osery was with the Department of Electrical and Computer Engi-
neering, University of New Mexico, Albuquerque, NM 87106 USA. He is now
with the Department of Electrical Engineering, New Mexico Institute of Mining
and Technology, Socorro, NM 87801 USA (e-mail: aly.elosery@ieee.org).

J. Burge and A. Saba are with the Department of Computer Science, Univer-
sity of New Mexico, Albuquerque, NM 87106 USA.

M. Jamshidi and M. Fathi are with the Autonomous Control Engineering
Center, Department of Electrical and Computer Engineering, University of New
Mexico, Albuquerque, NM 87106 USA.

M.-R. Akbarzadeh-T. is with Ferdowsi University of Mashhad, Mashhad
91368, Iran.

Publisher Item Identifier S 1083-4419(02)06461-0.

provides for decreased overall drag, and hence, increased range.
In the case of air vehicles and microsatellites, we can also
expect increased flexibility and robustness at lower cost [1],
and increased efficiency in interferometeric synthetic aperture
radar (InSAR) [2].

Furthermore, the advantages of having multiple agents are
not limited to tasks too large for a single agent alone. Multiple
cooperating agents also promise increased mission robustness
and learning ability. Using multiple agents also allows for the
failure of a single agent without the failure of the entire mission.
Other researchers have commented that the capability of
cooperating robots is higher than the sum of their individual
capabilities. Specifically, Berenji and Vengera [3] showed the
learning capability of cooperating agents is higher within the
reinforcement-learning paradigm. This point can perhaps be
demonstrated by considering the success of social animals such
as humans, bees, and ants. Human societies are an elaborate
example of a large number of task-specific multiple agents
who cooperate in order to achieve a higher standard of success
than any one human being could obtain acting alone.

This promise of added capability and enhanced performance
is, however, provided at additional cost of added system com-
plexity. Here, we introduce “social intelligence” as a framework
of multiagent cooperation. In 1997, Dudeket al. [4] described
several axioms for multiagent robotics which differentiated
among various approaches based on collective size and re-
configurability, communication range and composition, and
the processing ability of each agent within the collective.
Fig. 1 illustrates a different breakdown where various ways
of handling multiagent robotics can be categorized by their
framework of intelligence, architecture of cooperation, learning
and optimization, type and level of communication and secu-
rity, world environment and task type, and their architecture
of perception.

Learning is a common aspect of multiagent robotics where
robustness and performance is demanded in the face of envi-
ronmental uncertainty. Various algorithms may be used in the
learning that are often closely interrelated with the collective’s
cooperation architecture. Uchibeet al. [5] used genetic pro-
gramming for coevolution of three mobile robots in a soccer
game where both cooperation as well as competition behaviors
were obtained. Nilli-Ahmadabadi [6] investigated nonhomo-
geneity in a different light, where agents had similar mechanical
capabilities, but differing levels of expertise. Applying rein-
forcement type learning, they showed that cooperative learning
is accelerated when agents have different experiences.

1083-4419/02$17.00 © 2002 IEEE

792 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 1. Multiagent robotics is also a multifaceted field.

Fu [7] is probably the first to introduce learning control.
Based on Fu’s definition, a learning controller is one that learns
the information during the operation and the learned infor-
mation is, in turn, used as an experience for future decisions
or controls. Several researchers have investigated different
types of learning control algorithms (e.g., Chandrasekharan
and Shen [8], and Lakshmivarahan [9]) and their applications
to real-life problems such as active vehicle suspension [10],
path planning for manipulators [11], and path control in an
automated highway systems [12]. Jamshidiet al. [13], [14]
have proposed a learning control approach for two dimensional
systems with applications in robotic manipulators and nuclear
reactors. In this paper we discuss the use of learning control
for multiagent robotics using astochastic learning automata
(SLA).

In order to implement SLA, first a simulation environment,
called V-Lab, is being created to facilitate testing the appli-
cations of SLA. One of the most powerful outcomes of the
digital computer has been its role in representing real physical
environments through modeling and simulation. Amodelis a
representation of a real system. Often, physical principles are
the cornerstone for creating mathematical models, be it lumped
parameter, distributed parameter systems, or heuristic models.
Simulation utilizes a model (mathematical or otherwise) to
make a hypothetical realization of a real physical system and
allows the user to simulate numerous alternatives based on
“what if” situations. In many circumstances, several physical
models and simulations need to interconnect and take place
simultaneously for a larger more complex simulation to yield
results. This requirement leads to the notion ofdistributed
modeling and simulationin a multiphysics environment.

In this paper, we intend to cover three complementary
paradigms, namely, the SLA as a learning paradigm; V-Lab
as a framework of interaction and modeling, which includes
discrete-event system specifications (DEVS) [15]–[17]; and
multiagent robotics as an application. The multiteacher

penalty/reward within the SLA learning paradigm allows for
multiaspect multiobjective learning. The cooperative architec-
ture is centralized where a more intelligent master robot plans
the execution of complex tasks, divides them into simple tasks
and accordingly instructs the slave robots to carry on simple
tasks. Furthermore, stochastic learning is embedded in all levels
of this discrete-event-based hierarchy. The resulting multiagent
system is analogous to an army battalion where soldiers carry
on simple tasks as directed to them; yet, the resulting action of
the collective can be quite complex. The following approach
is unique in that it applies stochastic learning paradigm to
DEVS representation of a mobile robot collective. It is felt
that this view of multiagent robotics can have strong applied
implications in both the realms of stochastic learning as well as
multiagent robotics.

The paper is structured as follows. Section II introduces the
various desirable features of the proposed V-Lab simulation en-
vironment. Section III briefly introduces DEVS as the collec-
tive’s general framework of cooperation and communication.
In Section IV, the V-Lab structure is discussed. An SLA is dis-
cussed in Section V. Finally, conclusions and future works are
presented in Section VI.

II. V-L AB OVERVIEW

The design of distributed simulations frequently becomes
large and complex. Applying a layered pattern to the design of
a simulation breaks the simulation into several interconnected
layers, each of which becomes more manageable than the
simulation as a whole. Each layer has a distinct purpose and
acts as a foundation for the layer above it. Furthermore, many
different simulations require the same problems to be solved
and the use of layers dramatically increases the amount of code
that can be reused from simulation to simulation. In this section,
we introduce a definition of a layered framework that allows
for the construction of distributed-agent-based simulations in a
virtual laboratory, V-Lab.

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 793

Fig. 2. Distributing simulation layers using DEVS.

A. V-Lab Environment

The V-Lab environment consists of four distinct software
layers, as shown in Fig. 2, and each of these layers fills a
specific role in the simulation. The foundation of the simulation
consists of the operating system and the network code needed to
operate the networking hardware, which in turn allows machines
to communicate over a network. Using this functionality, the
common object request broker architecture (CORBA) [18] acts
to solve the problem of how to use the network to connect
different portions of a simulation together. While CORBA
provides a useful tool for software interconnection, it does
not provide the architecture needed to arrange components of
a simulation into discrete structures. The DEVS environment
is introduced in Section III. Using the DEVS environment,
V-Lab defines an appropriate structure in which to organize the
elements of DEVS for a distributed-agent-based simulation. It
separates the main components into different categories and
defines the logical structure in which they communicate. It
also provides the critical objects needed to control the flow
of time, the flow of messages, and the base classes objects
designers will need to create their own V-Lab modules. The
design of V-Lab is introduced in Section IV.

III. D ISCRETE-EVENT SYSTEMS

The DEVS environment is a distributed modeling environ-
ment developed by the modeling and simulations group at the
University of Arizona headed by Zeigler [16], [17]. It was cre-
ated to provide a robust and nonspecific environment for mod-
eling and simulation projects. The DEVS environment expands
the capabilities of more generic distributed architectures such
as CORBA. The DEVS environment provides classes that en-
capsulate all the functionality that is needed to create a module
which is fully capable of being connected to other modules in
a meaningful relationship, regardless of which machines these
modules are located on.

Layered on top of the DEVS environment are the models
that a developer would create to compose a simulation. These
models are divided into two categories: 1)atomic and 2)
coupled. Atomic models compose the functionality of the basic
units in a simulation. Using these atomic models as building
blocks, coupled models build up the simulation by linking
them together. Thus, simulations using DEVS are collections
of models composed in a hierarchical fashion. For instance, a
DEVS coupled model ABC, such as the one in Fig. 3, can be
constructed from an atomic and a coupled model, A and BC,

respectively. BC is itself a coupled model that is constructed
from two atomic models, B and C.

The hierarchical specification defines which models are in-
cluded as submodels for any given coupled model, but it does
not define how these submodels interconnect with the parent
model or with each other. This information is defined in the form
of ports and couplings. Fig. 4 illustrates one such coupling for
the ABC model.

In the example, the input into ABC is coupled with the input
in A. In effect, this transfers all messages coming into the ABC
model on its in-port to the in-port on the atomic model A. The
output of A is then coupled to the input of the BC model and
the output for BC is coupled to the output of ABC. A similar set
of couplings is defined for the coupled model BC. If the ABC
model itself was coupled to other models, messages passing to
the ABC model’s output ports would be passed to the input ports
of these models.

In order to fully define an atomic model, the following infor-
mation must be specified:

1) the input ports that receive external events;
2) the output ports that send external events;
3) generally, two state variables,phaseandsigma, indicating

what state the model is in, and how long it will be in that
state;

4) a time advance function that controls the timing of the
internal transition functions (frequently based onsigma);

5) an internal transition function that determines which state
the model will go to after being in statephasefor the
duration indicated bysigma;

6) an external transition function that determines which state
the model will go into from statephaseafter receiving a
message on an input port and how long it will stay in that
state;

7) a confluent transition function that determines the order
in which the internal and external transition functions will
occur;

8) an output function that generates external events just be-
fore an internal state transition occurs.

In order to fully define a coupled model, the following infor-
mation must be specified:

1) the models from which the coupled model is composed;
2) the input ports that receive external events;
3) the output ports that send external events;
4) the coupling specification that ties the input and output

ports of the coupled model to input and output ports of
the models contained within the coupled model;

5) the coupling specification that ties the input and output
ports of the models contained within the coupled model
together.

The interaction between all of the models, both coupled and
atomic, comprises a simulation. Fig. 5 illustrates the order of
events that generally takes place in the execution of a simula-
tion. First, the models are created. The coupling between the
models is then set up. After that, all the models are initialized
and then a message is sent to the highest coupled model that
starts the DEVS simulation cycle. The simulation loops through

794 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 3. Hierarchal tree for model ABC.

Fig. 4. Coupling relation for model ABC.

Fig. 5. Control flow of a simulation using DEVS.

the DEVS cycle until the termination conditions are met, at
which point the simulation will end.

At each pass through the DEVS cycle, a message is passed
down the hierarchical tree of models to determine which atomic
models areimminent. Imminent models are models that are
scheduled to perform an internal transition at the current time
step. If no model is imminent, the pass through the DEVS
cycle will be over. (Note that the DEVS cycle is slightly more
complex than this and is able to skip cycles in which no models
are imminent.) If there are imminent models, they will generate
external events on their output ports and proceed through their
internal transition.

After the imminent models have completed their transitions,
all the external events they created are sent to the models that
they are coupled to. Each of these models will then call their
external transition function to change their states. The comple-
tion of this step ends a single iteration of the DEVS cycle.

In addition to providing classes for models and the environ-
ment in which simulations run, the DEVS environment pro-
vides an abstract data class library. Fig. 6 lists these classes and
their hierarchical structure. This library provides classes which
can be used to store, retrieve, and organize objects used in the
simulation [16].

Fig. 6. Class hierarchy for containers.

Fig. 7. Coupling diagram for example simulation.

Fig. 8. Hierarchical tree for example simulation.

A. An Example: Simple Light-Switch Model

There is no better way to illustrate the functionality of the
DEVS environment than by illustration of a simple example.
The following simulation models two switches that each con-
trols a light bulb. When a switch is pressed, its respective light
bulb will turn on. Fifteen seconds afterwards, the light bulb
switches off and flips on the switch for the other light bulb. Sim-
ilarly, when the second light goes off, it causes the first switch
to turn on which causes a cycle that will then repeat endlessly.

Fig. 7 shows the coupling diagram for the model, and Fig. 8
gives the hierarchical construction of the model. The simulation
is constructed from a single coupled model, Circuit, which is
constructed from two instances of a single atomic model, Light-
bulb. The Circuit class defines the coupled model, and the two
atomic models are defined from the Lightbulb class. The simu-
lation will follow the general order of events that take place in
most DEVS simulations (see Fig. 5). First, the coupled model
Circuit will be created. As its constructor is called, it will create
both of the atomic models Lightbulb 1 and Lightbulb 2. It will
then couple all the models together. Each model initializes itself

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 795

Fig. 9. State and timing diagrams for example solution." indicates the model is sending out a message.# indicates the model is receiving an incoming message.

and the simulation will be ready to run. At this point, a message
will be injected into the Circuit instance and a single round of
the DEVS cycle will execute. After each cycle, another message
will be injected into the Circuit instance and the DEVS cycle
will repeat indefinitely.

Fig. 9 contains three diagrams for each of the atomic models
as the simulation runs through time. The first is a state dia-
gram that shows the changing values of thephasevariable. No-
tice that Lightbulb 1 and Lightbulb 2 are constantly in different
states. The second diagram shows the elapsed time each model
has been in its current state, and the last diagram shows where
there is an incoming and outgoing message. Incoming mes-
sages are indicated with a “down” arrow, and outgoing mes-
sages are indicated with an “up” arrow. For every message in
one atomic model, there is an equivalent opposite message in
the other atomic model.

In the first iteration of the DEVS cycle, Lightbulb 1 is in the
bright state with asigmavalue of 15, and Lightbulb 2 is in the
dim state with asigmavalue of infinity. After 15 iterations of
the DEVS cycle, the internal transition function of Lightbulb 1 is
called which causes it to go from thebrightstate to thedimstate.
However, just before the internal transition occurs, Lightbulb
1’s output function is called, sending a message to the input
port to Lightbulb 2. In turn, this causes Lightbulb 2’s external
transition function to be called causing Lightbulb 2 to enter the
brightstate with asigmavalue of 15. After 15 more DEV cycles,
an equivalent sequence event occurs between Lightbulb 2 and
Lightbulb 1.

IV. PROPOSEDV-LAB ARCHITECTURE

V-Lab models can be categorized into one of six groups:

1) SimEnvandSimMan;
2) control models;
3) agent models;
4) physics models;
5) terrain models;
6) dynamic models.

Each of these models is referred to as ahigh-level modeland is
constructed from atomic and coupled models that are not high-
level models.

Figs. 10 and 11 give the coupling diagram for the relation
of all the high-level models and the hierarchical layout, re-
spectively. The heart of V-Lab, and the first type of high-level
models, are the SimEnv coupled model and the SimMan
atomic model, which are common to every V-Lab simulation.
SimEnv is the highest level coupled model in the simulation,
and is responsible for creating the instances of all of the other
high-level models. It acts as the housing for all the high-level
models in the simulation. SimMan is an atomic model to
which all other models in SimEnv connect. It is responsible
for coordinating messages between other high-level models,
controlling the flow of time in the simulation, and tracking
information about the state of the agents in the simulation. All
of the high-level models have at least one input port and one
output port tied to SimMan.

The second type of high-level models are the control models.
They store the behavior algorithms that will be used to control
the agent, physics, and terrain models. The control objects can
be based on fuzzy logic, SLA, neural networks, etc. Agent con-
trol models indirectly determine what an agent will do by con-
trolling the agent’s actuators, which will later cause a dynamic
model to change the state of an agent.

The third type of high-level models are the agent models
which contain sensor models and actuator models. The sensor
models contain the information about the environment that the
agent is aware of and the actuators contain the information that
dynamic models use to modify the agent and the environment.

The fourth type of high-level models are the physics models.
These models are used to model the world physical phenomena
present in the simulation. How the agent interacts with the en-
vironment and how agent sensors set their state is encapsulated
within the physics models.

The fifth type of high-level models are the terrain models.
The terrain models contain information about the layout of the
simulation’s environment and are analogous to maps.

The sixth, and last, type of high-level models are the dynamic
models. These models are responsible for making changes based
on the state of the agents and their actuators to the agent models
and to the information SimMan tracks about the agent models.

Since each of the high-level models is coupled to SimMan,
when one high-level model needs to get information from
another high-level model it can (and must) do this through

796 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 10. Relationship diagram for high-level models.

Fig. 11. Hierarchical model structure for SimEnv and SimMan.

SimMan.1 This increases the amount of time it takes to send
messages from one model to another, but it greatly reduces the
amount of coupling required between any two arbitrary models.

Fig. 12 shows the port connections between all of the high-
level models, and the typical models that they contain. SimMan
has a specific set of ports coupled to every high-level model.
SimMan contains one output port to the control algorithm in
every control model, one output port for each of the sensors in
the agent model, one input port from the agent’s actuators, and
one set of input–output ports tied to the physics, terrain, and
dynamic models.

SimMan also controls the timing and sequence of events that
occur in the simulation. Fig. 13 illustrates the flow of time, con-
trolled by SimMan, in a typical simulation. Once SimMan gets
a signal from SimEnv that initiates the DEVS cycle, SimMan
will perform iterations of the V-Lab cycle until the simulation
terminates.

A. V-Lab Cycle

Phase 1 marks the start of the V-Lab cycle in which SimMan
checks to see if the termination events are satisfied. If they are,
the cycle stops. If they are not, SimMan enters Phase 2 of the
V-Lab cycle.

At the beginning of Phase 2, the state of the agent’s sen-
sors needs to be updated. SimMan sends a message to each
agent’s sensor. Once the sensors receive this message, they will
send out requests for their state information back to SimMan.
These messages will be routed to any physics models that can
fill in the required information. The physics models may send

1With the exception of control models and the agent models they control.

Fig. 12. Coupling diagram example for SimMan.

Fig. 13. Phase and state diagram for SimMan.

more messages back to SimMan requiring information from
other high-level models. After the physics models have finished
their calculations they will send their results back to SimMan.
SimMan then forward them back to originating sensor. At this
point, the sensor will send a message back to SimMan indicating
that it has finished. They will also send out a message to the con-
trol algorithms with their new state. Once all the sensors have
finished, SimMan proceeds into Phase 3.

Phases 3, 4, and 5 contain similar parlays of messages
between SimMan and models. However, in these phases, the
primary models with which SimMan communicates are the
control, actuator, and dynamic models, respectively.

During all of the phases of the V-Lab cycle, many messages
are being passed between the myriad of DEVS models that com-
prise the simulation. It is important for the objects that represent
the messages to be suitable for a wide range of possible mes-
sages that can exist. V-Lab defines a Message class that acts as
a base class for any object that acts as a message sent between
the high-level models.

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 797

Fig. 14 visualizes the structure of a typical message object.
The message is broken up into two sections, the header section
and the data section. The header information consists of infor-
mation that is used by SimMan to track and route the message
to and from the sender and all valid receivers. This section con-
tains information such as the name of the originating high-level
model, the message identification number, whether or not the
message represents a request for information or the supply of
information, etc. Message classes that inherit from the Message
base class will generally not modify the information that is as-
sembled in this section.

The data section represents the actual information that is
being passed between two high-level models; however, certain
messages do not contain a data section. Typically, Message
classes that inherit from the V-Lab Message class will add data
structures to this section of the message.

B. Multiprocess V-Lab

In order implement the V-Lab architecture on multiple
platforms, each platform will contain a single SimEnv model.
That SimEnv model will be coupled to each of the other
SimEnv models on other machines. On a solitary machine, a
SimMan module routes all the messages from its high-level
models to other high-level models with which it is connected.
If that SimMan module cannot find another high-level model
that can respond to the message, it will send that message out to
the other SimMan objects on different machines. Each of those
SimMan models will respond with either the correct message
response or an indication that it does not contain a high-level
model that can respond to the message.

Excessive message passing between models in the same
process should always be avoided, but in the case of inter-ma-
chine message passing, excessive message passing can bring
the simulation execution to a grinding halt. It is important to
keep high-level models that are highly dependent on each other
located in the same machine. This is not a trivial problem and
future work needs to be done to optimize this process in the
general case.

C. Requirements for a Specific Simulation

V-Lab provides the framework for a simulation designer to
begin his work. However, in order to fully create a simulation,
the designer will need to develop the actual components of the
simulation (or reuse existing components). For a given simu-
lation, the simulation designer is responsible for providing the
following:

1) a class namedSimContents;
2) all of the high-level models;
3) message classes;
4) a termination function.
SimContents defines which high-level models will be in-

cluded in the simulation. The designer provides these high-level
models; however, the designer will not have to decide how the
models are coupled together as this is primarily defined by
the V-Lab architecture. The designer will also have to provide
subclasses of the Message class, which will define the structure

Fig. 14. Typical message object.

of the messages being passed between the high-level models.
Finally, in order for SimMan to know when the simulation will
end, the designer will have to provide a Boolean termination
function that returns true if the simulation has met its termina-
tion conditions, and false otherwise.

Once the designer has created all of these components and
connected them together with the V-Lab architecture, the sim-
ulation can be run. Furthermore, after all of these components
have been created, it is a relatively easy task to modify the com-
ponents of the simulation in order to run a wide variety of test
runs in the same or similar environments. The modularity of the
components in V-Lab adds a tremendous amount of power and
flexibility to the simulations run on its architecture.

V. STOCHASTIC LEARNING AUTOMATA

Control theory, including optimal control theory, often re-
quires perfect information ora priori information of the system
to be controlled. In many practical problems, this information
may not be available. Hence, in these situations, as an alternative
approach, the use of learning control algorithms becomes nec-
essary. Learning control is of particular interest in distributed
robotics. In most cases, the robots are sent into an environment
of which little knowledge is available, i.e., contaminated depos-
itory or Mars surface. The robots are then required to learn their
environment and perform their task with minimal error. An im-
portant tool in learning control is SLA. The basic operation of
SLA is as follows. At any given time, an action is performed by
the SLA based on its internal states. Due to that action, the envi-
ronment (also referred to as a “teacher”) responds with a value
between zero and one. A value of zero corresponds to full re-
ward and a value of one corresponds to full penalty. Based on
this feedback from the environment, SLA updates the probabil-
ities of choosing a certain state. This process is repeated until
the average penalty is minimized.

Learning automaton (LA) needs no knowledge of the model
of the process to be controlled or any analytical knowledge of
the function to be optimized. It is connected in feedback loop
to the environment (see Fig. 15). LA is a sequential machine
characterized by a set of:

1) internal states;
2) input actions;
3) state probability distributions;
4) reinforcement scheme;
5) output function.

798 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 15. Feedback loop of a learning automaton.

The probability distribution of the actions is adjusted using
the reinforcement scheme to achieve the desired objective.

A. Terms and Definitions

In this section, some of the variables and terms used
in SLA are introduced. A stochastic automaton is a
quintuple [7]. is a finite set of in-
puts, , is a set of finite internal
states , is finite set of outputs

, is the next state function

(1)

and is the output function

(2)

The probability of choosing a certain state or action,, is
. The probability of a penalty is denoted by, and hence,

the probability of a reward is . Fig. 16 shows the operation
of an SLA block.

B. Basic Operation of an SLA

If the state is chosen at time step, then the stochastic
automaton performs action. As a result of this action, a reward

or a penalty is assigned. The SLA then updates
the probabilities of the internal states.

The performance of the SLA is determined using the mathe-
matical expectation of penalty [7]

(3)

If

(4)

The performance of the SLA is calledexpedient. Expedi-
ency reflects the closeness ofto .
If , then the SLA is said to be optimal. The idea is to
update the probability distribution in order to achieve expedient

Fig. 16. SLA block.

performance. This may be accomplished using a reinforcement
scheme.

C. Reinforcement Learning

In learning control, the basic problem is to determine the con-
trol action such that

(5)

where is the instantaneous performance evalu-
ation of the action following reaction , and is the response
due to the action after a reaction . In this section, Fu’s re-
inforcement learning algorithm is presented [7]. Let be
the variable relating the system performance measure to the re-
sponse of the stochastic environment due to the actionof
the LA. Then, the linear reinforcement algorithm may be of the
form

(6)

for where

and

if

if .

(7)

is the stochastic approximation used to estimate
.

According to Fu [7], if we let

(8)

then

(9)

If

for every (10)

(11)

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 799

Fig. 17. Top view of the simulation.

and

(12)

then

(13)

which means that the desired optimal control law will eventually
be reached with probability one [19].

D. Simulation

In this section, the case study used to test the SLA is pre-
sented. In this case study, two robots are to collaborate together
to perform a certain task. It is assumed that all the measure-
ments available to the robots are corrupted with white Gaussian
noise. Assume that we have an object that needs two robots to
move it and push it to a preassigned location. The robots have no
information about the size of the object, the environment they
are in, or the location to which the object is to be taken. The
robots also have no information about the function that needs
to be optimized, making the problem more complex. These two
robots could be thought of as robotic agents on a distant planet,
and their mission is to collect rock samples from that planet. At
times, the rock samples may be too large for one robot to handle,
and hence, the need for multiple robots to collaborate becomes
necessary. Due to lack of the information about the environment,
the models of the robot, or the function to be optimized, it may
not be possible to use traditional control methodologies; instead
we use SLA to determine the actions of the robots.

The two robots communicate with a central station that re-
sponds to the action of the robots by either a reward or a penalty.
Each robot is equipped with simple sensors to allow them to
locate the object and to align themselves. The central station
has no information about the actual mathematical model of the
robots and the data it collects is corrupted by noise. It is as-
sumed that the robots have a mechanism for locating themselves

Fig. 18. Simulation results.

at the opposite ends of the object. Using the software environ-
ment Webots [20], the simulation was carried out. The simula-
tion includes the physical model of the robots, the object, and
the environment.

The goal of the SLA is to determine the set of actions needed
by the two robots in order to orient the object and push it to the
desired location. The possible actions that can be taken by the
robots are:

1) both robots push forward;
2) left robot pushes;
3) right robot pushes.
As the simulation progresses, the central station sends a

penalty or a reward, based on the actions of the robots. If the
robots perform the wrong sequence of actions, the block will
not be delivered to the desired location. The penalty or the
reward is determined with the help of Fig. 17. If is greater
than , then pushing forward or having only the left robot
push will be rewarded. If angle is greater than 60, then

800 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 19. Plots of the probabilities of the SLA actions. (a) The entire simulation. (b)–(e) Zoomed windows on the ranges of interest.

having the left robot pushing alone will be penalized. This is
done to avoid having the two robots align parallel to the central
line. A similar criterion is used if the object is on the right side
of the central line.

In Fig. 18, snapshots of the simulation are shown. Notice that
the robots attempt to align the object about the central line in

various steps. First, the left robot pushes alone, then both of the
robots push at the same time bringing the object closer to the
central line. The right robot then pushes the object in order to
align it, and then both robots push at the same time bringing
the object to the desired location. The probabilities of the ac-
tions are demonstrated in Fig. 19. Using SLA, the probabilities

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 801

of choosing a certain action is constantly updated based on the
feedback from the central station. As shown in Fig. 19, the prob-
abilities converge to the right sequence. Due to the fact that the
measurements collected at the base station are corrupted with
noise, the actions have to be determined probabilistically.

VI. CONCLUSION

In most practical problems, the information about the plant to
be controlled or the environment in which it operates is not avail-
able. In these situations, learning control is needed. SLA pro-
vides a means of learning the optimal set of actions in order to
achieve the desired goal with minimum penalty. Implementing
SLA requires the creation of a simulation platform to model the
physics of the problem. The architecture of such a platform is
presented as V-Lab.

Using the V-Lab architecture to perform a simulation allows
a developer to avoid a lot of the work involved in creating a
distributed simulation. Process communication is handled by
CORBA; an intelligent methodology for creating objects and
their communication is provided by DEVS; and a structure spe-
cific for simulations is provided by V-Lab. Furthermore, since
V-Lab uses a layered pattern in its design, if any of the layers be-
come obsolete in the future, they can be replaced without having
to replace the entire architecture. With this design, V-Lab offers
a flexible and powerful approach to creating simulations that al-
lows for the reuse and modularity of simulation components.

Future work is being considered that would allow high-
level models to be transferred from one machine to another
dynamically. A simple solution could be to monitor the amount
of messages coming into a model from local models and from
inter-machine models. If the amount of messages coming in
from the external models exceeds the amount of messages
coming from internal models, the simulation might benefit from
the model being moved to another machine. For distributed
simulations using just two machines, the problem of model
placement is analogous to graph partitioning, a NP-complete
problem [21]. This indicates that as the number of models grows,
the amount of time required to find the optimal placement of
the models grows at a much larger rate. This, unfortunately,
means that no algorithm for a large number of models could be
guaranteed to find the optimal solution in every case. However,
this is not to say that effective heuristics cannot be designed to
determine good solutions to the problem of graph partitioning,
as Johnson [22] shows with simulated annealing.

Other future work could involve allowing a simulation to
dynamically grow onto more machines. If the SimEnv model
found that it was demanding more computational power than it
had and was causing other SimEnv models across the network
to constantly wait for it to finish, it could spawn a copy of itself
on another machine in an attempt to reduce its workload. Logan
and Theodoropoulos [23] have come up with multiagent simula-
tions that use this “divide and conquer” method to use multiple
processes that determine when they should spawn off children
processes to aid in doing work.

In the simulation section of this paper, a case study was
presented. The goal was to coordinate two robots in order to

push an object to a central location. Without any knowledge
about the object to be moved, and with corrupted measurements,
the robots are supposed to determine the optimal set of actions.
Using SLA, the robots successfully pushed the object to the
desired location. Future work will include the use of the
hierarchical structure introduced by Saridis [24], [25]. The
hierarchical architecture consists of anorganizational level,
a coordination level, and anexecution level. A command is
sent to the organizational level (top level); the output of the
organizational level is a set of alternative tasks that are capable
of executing the command. The coordination level then takes a
task as an input and composes set of primitive tasks. Then, the
execution level translates the primitive tasks to actions. In order
to determine the optimal selection of tasks and primitive tasks,
two translation levels are used. This structure will facilitate the
design of learning controller that can handle more sophisticated
problems. Furthermore, other optimization techniques such as
the one proposed by Fathi and Hildebrand [26] will be studied.

Due to the complexity of the project, not all of the V-Lab
components were designed, and for the front end of the simula-
tion, Webots software designed by Cyberbotics was used [20].
However, in the future, V-Lab will have its own front end (GUI)
of the simulation.

ACKNOWLEDGMENT

The authors thank S. Mallipeddi and Dr. B. Zeigler, Univer-
sity of Arizona, and Dr. H. Sarjoughin, Arizona State University,
for their contributions and helpful discussions.

REFERENCES

[1] J. P. How and M. Tillerson, “Analysis of the impact of sensor noise on
formation flying control,” inProc. Amer. Control Conf., vol. 5, 2001, pp.
3986–3991.

[2] P. De Rego, “Increased efficiency in interferometric synthetic aperture
radar-InSNAR,” Ph.D. dissertation, Dept. Elect. Comput. Eng. and ACE
Center, Univ. New Mexico, Albuquerque, Aug. 2002.

[3] H. R. Berenji and D. Vengerov, “Advantages of cooperation between
reinforcement learning agents in difficult stochastic problems,” inProc.
9th IEEE Int. Conf. Fuzzy Systems, vol. 2, 2000, pp. 871–876.

[4] G. Dudek, M. R. M. Jenkins, E. Milios, and D. Wilkes, “A taxonomy of
multiagent robotics,” inAutonomous Robots. Norwell, MA: Kluwer,
1997.

[5] E. Uchibe, M. Nakamura, and M. Asada, “Coevolution of cooperative
behavior acquisition in a multiple mobile robot environment,” inProc.
IEEE Int. Conf. Intelligent Robots and Systems, vol. 1, 1999, pp.
425–430.

[6] M. Nilli-Ahmadabdadi, M. Asadpur, S. H. Khodaabakhsh, and E.
Nakano, “Expertness measuring in cooperative learning,” inProc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2000, pp.
2261–2267.

[7] K. S. Fu, “Learning control systems-review and outlook,”IEEE Trans.
Automat. Contr., vol. AC-15, no. 2, pp. 210–221, 1970.

[8] C. Chandrasekharan and D. W. C. Shen, “On expediency and conver-
gence in variable structure stochastic automata,”IEEE Trans. Syst. Man
Cybern., vol. SSC-5, pp. 52–60, 1968.

[9] S. Lakshmivarahan,Learning Algorithms: Theory and Applica-
tions. New York: Springer-Verlag, 1981.

[10] T. J. Gordon, C. Marsh, and Q. H. Wu, “Stochastic optimal control of
active vehicle suspensions using learning automata,” inProc. Mech.
Eng.—Part I: J. Syst. Contr. Eng., vol. 207, 1993, pp. 143–152.

[11] K. Naruse and Y. Kakazu, “Strategy acquisition of path planning of re-
dundant manipulator using learning automata,” inIEEE Int. Workshop
Neuro-Fuzzy Controllers, 1993, pp. 154–159.

802 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

[12] C. Unsal, P. Kachroo, and J. S. Bay, “Multiple stochastic learning au-
tomata for vehicle path control in an automated highway system,”IEEE
Trans. Syst., Man, Cybern. A, vol. 29, pp. 120–128, Jan. 1999.

[13] M. Jamshidi and Z. Geng, “A learning 2-D control approach for robot
manipulator,”J. Expert Syst. Applicat., vol. 4, no. 3, pp. 297–304, 1992.

[14] Z. Geng and M. Jamshidi, “Learning control-system analysis and design
based on 2–D system-theory,”J. Intell. Robot Syst., vol. 3, no. 1, pp.
17–26, 1990.

[15] Arizona Center for Integrative Modeling and Simulation. (2002) ACIMS
Report. [Online]. Available: http://www.acims.arizona.edu/, electronic
document.

[16] , (2002) DEVS/HLA Tutorial. [Online]. Available:
http://www.acims.arizona.edu/DEVS_HLA/devs_hla.html, electronic
document.

[17] B. Zeigler. (2002) DEVS theory of quantized systems. [Online].
Available: http://www.acims.arizona.edu/DEVS_HLA/CDRLs/Uni-
vArizonaCDRL1.pdf, electronic document.

[18] The Object Management Group. CORBA BASICS. [Online]. Available:
http://www.omg.org/gettingstarted/corbafaq.htm, electronic document.

[19] K. S. Fu and T. J. Li, “Stochastic automata as models of learning sys-
tems,” in Computer and Information Sciences, J. T. Tou, Ed. New
York: Academic, 1967, vol. 2.

[20] Cyberbotics. (2002) Webots 3.0 User Manual, Lausanne, Switzerland.
[Online]. Available: http://www.cyberbotics.com.

[21] B. Moret and H. Shapiro,From P to NP. Reading, MA: Addison-
Wesley, 1990, vol. 001.

[22] D. S. Johnson, “Optimization by simulated annealing: An experimental
evaluation—Part I: Graph partitioning,”Oper. Res., vol. 37, no. 6, pp.
865–892, 1989.

[23] B. Logan and G. Theodoropoulos, “The distributed simulation of multi-
agent systems,”Proc. IEEE, vol. 89, pp. 174–185, Feb. 2001.

[24] K. P. Valavanis and G. N. Saridis,Intelligent Robotic Sys-
tems. Norwell, MA: Kluwer, 1992.

[25] P. U. Lima and G. N. Saridis, “Intelligent controllers as hierarchical
stochastic automata,”IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp.
151–163, Apr. 1999.

[26] M. Fathi and L. Hildebrand, “Model-free optimization of fuzzy-rule-
based system using evolutionary strategies,”IEEE Trans. Syst., Man,
Cybern. B, vol. 27, pp. 270–277, Apr. 1997.

Aly I. El-Osery (S’00–M’02) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the University of New Mexico, Albuquerque,
in 1997, 1998, and 2002, respectively.

From 1997 to 2002, he was a Research Assistant
at the Autonomous Control Engineering Center
at the University of New Mexico. In 2002, he
joined the Department of Electrical Engineering at
New Mexico Institute of Mining and Technology,
Socorro. His research interests are in the areas of
multiagents robotics, wireless communications,

control systems, and soft computing.
Dr. El-Osery has received many awards, including Outstanding Junior (1996)

and Outstanding Graduate Student (1998) from the Department of Electrical
Engineering, and the School of Engineering Award for Outstanding Graduate
Student in Electrical and Computer Engineering (1998–1999 and 2001–2002).

John Burge was born in Albuquerque, NM. He re-
ceived the B.S. degree in computer science from the
University of New Mexico, Albuquerque, in 2002,
where he is currently pursuing the M.S. degree.

Mo Jamshidi (S’66–M’71–SM’74–F’89) received
the B.S.E.E. from Oregon State University, Cor-
vallis, in 1967, and the Ph.D. degree in electrical
engineering from the University of Illinois at Ur-
bana-Champaign in 1971, and an honorary doctorate
degree from Azerbaijan National University, Baku,
in 1999.

Currently, he is the Regents Professor of Electrical
and Computer Engineering, the AT&T Professor
of Manufacturing Engineering, and Founding
Director of the Center for Autonomous Control

Engineering (ACE) (http://ace.unm.edu) and co-founded the PURSUE program
(http://pursue.unm.edu) at the University of New Mexico, Albuquerque. He was
on the advisory board of the NASA Jet Propulsion Laboratory’s (JPL) MARS
Pathfinder project mission. He is currently a Member of the NASA Minority
Businesses Resource Advisory Committee (MBRAC) and was a Member of the
NASA JPL Surface Systems Track Review Board. He was on the U.S. National
Academy of Sciences NRC’s Integrated Manufacturing Review Board and
was on NAE’s task force on aerospace engineering. Previously, he spent six
years at the U.S. Air Force Research (weapons or Phillips) Laboratory working
on large-scale systems, control of photonics systems, and adaptive optics. He
has been a Consultant with the Department of Energy’s Los Alamos National
Laboratory, Sandia National Laboratories, and Oak Ridge National Laboratory.
He has worked in various academic and industrial positions at many national
and international locations including with IBM and GM. As ACE Center
Director, he has led a large academic team of researchers and educators which
has, thus far, resulted in over 75 M.S. graduates and 23 Ph.D. graduates in
engineering. He has over 500 technical publications including 49 books and
edited volumes. Six of his books have been translated into at least one foreign
language. He is the Founding Editor, Cofounding Editor, or Editor-in-Chief
of five journals (including Elsevier’sInternational Journal of Computers and
Electrical Engineering) and Wiley’s and IOS Press’sIntelligent and Fuzzy
Systems, Coeditor-in-Chief since its inception in 1992).

Dr. Jamshidi is a Fellow of the IEEE for contributions to “large-scale systems
theory and applications and engineering education,” a Fellow of the ASME for
contributions to “control of robotic and manufacturing systems,” a Fellow of
the American Association for the Advancement of Science (AAAS) for contri-
butions to “complex large-scale systems and their applications to controls and
optimization,” an Associate Fellow of Third World Academy of Sciences (Tri-
este, Italy), a Member of the Russian Academy of Nonlinear Sciences, an As-
sociate Fellow of the Hungarian Academy of Engineering, an Associate Fellow
of Persian Academies of Science and Engineering, and a Member of the New
York Academy of Sciences. He was the recipient of the IEEE Centennial Medal,
the IEEE Control Systems Society Distinguished Member Award, and the IEEE
Control Systems Society Millennium Pin. He is an Honorary Professor at three
Chinese universities. He is on the Board of Nobel Laureate Glenn T. Seaborg
Hall of Science for Native American Youth. He is the Founding Editor-in-Chief
(1980–1984) of IEEE Control SystemsMagazine. He has been on the executive
editorial boards of a number of journals and two encyclopedias. He was the se-
ries editor for ASME Press Series on Robotics and Manufacturing from 1988 to
1996 and Prentice-Hall Series on Environmental and Intelligent Manufacturing
Systems from 1991 to 1998. In 1986, he helped launch a specialized sympo-
sium on robotics, which was expanded to International Symposium on Robotics
and Manufacturing (ISRAM) in 1988. In 1994, it was expanded into World Au-
tomation Congress (WAC) (http://wacong.com) where it now encompasses five
main symposia and forums on robotics, manufacturing, automation, control, soft
computing, financial engineering, multimedia, and image processing. He has
been the General Chairman of WAC from its inception. He is a copublisher of
WAC’s Official Publication—Intelligent Automation and Soft Computing(Al-
buquerque, NM: TSI Press, 1995–present).

Antony Saba, photograph and biography not available at the time of publica-
tion.

EL-OSERYet al.: V-LAB—VIRTUAL LABORATORY FOR AUTONOMOUS AGENTS 803

Madjid Fathi (S’98–M’92–SM’00) received the
B.S. degree from RWTH, Aachen, Germany, and
the M.Sc. degree in computer science and the
Ph.D. degree in mechanical engineering from the
University of Dortmund, Dortmund, Germany, in
1991.

He is currently a Research Professor at the
NASA Center for Intelligent System Engineering
(ISE) and the Center of Autonomous Control En-
gineering (ACE) at the University of New Mexico,
Albuquerque. He, together with Dr. Temme, have

invented the Fix-Mundies Theory for minimizing side-effects of hypertension
patients. The technology is now being prepared for a major pharmaceutical
corporation to produce a number of cocktail drug products. The technology
may also be applied to mechanical systems by enhancing stability processes.
The work will benefit other applications with on-line configuration tasks.

Mohammad-R. Akbarzadeh-T. (M’98–SM’02)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering, with concentration in robotics
and control system, all from the University of New
Mexico, Albuquerque, in 1989, 1992, and 1998,
respectively. His dissertation addressed the utility
of fuzzy logic and genetic algorithms in control of
complex systems.

From 1996 to 1999, he held dual appointments
as Research Engineer at the Center for Autonomous
Control Engineering, as well as Adjunct Assistant

Professor in the Department of Electrical Engineering at the University of
New Mexico, where he was responsible for various research involving appli-
cations of soft computing in systems such as flexible robots, multistage flash
desalination process, and multiagent robotic systems. Since 1999, he has been
with the Faculty of Electrical Engineering at Ferdowsi University of Mashhad,
Mashhad, Iran. His current research interests include intelligent systems,
nano-robotics, multiagent robotic learning/cooperation, and soft computing.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

