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Abstract 

In this paper we describe our knowledge representation 
model embodied within an algebra virtual laboratory 
dedicated to boolean reduction problem solving. The 
model is inspired by psychology theories that explain the 
human cognitive activity in terms of memory subsystems 
and theirprocesses. During the problem solving, complex 
knowledge entities, built from primitive units of 
knowledge, are dynamicaliy combined to represent the 
leamer behavior. This has the advantage to offer a 
closely fine prediction of the mastery degree and the 
acquisition level of each element of the taught knowledge. 

1. Introduction 

Although the concept of applying computer software 
for educational purposes dates back some decades, using 
virtual leaming environments for teaching and training is 
a field of increasing interest. During the last years, 
various attempts to create highly interactive virtual 
laboratories (VLs) have been made [7,9,12,16], 
engendering a large amount of enthusiasm in the 
educational community. Exploiting the multimedia 
features and the web advantages, VLs permit the leamer 
to experience, through exploration, the natnre of a wide 
variety of domains. Nevertheless, understanding how 
humans leam and how knowledge is smctured and 
handled during the learning process is important if we are 
to develop VLs that include tutorial strategies capable of 
dealing with complex domains and leamers with various 
degrees of howledge acquisition [l]. Undoubtedly, 
modelling this knowledge, acquired in a leaming context, 
is a realisation whose takes up a real challenge. Some 
representational knowledge models [3,11,15], which 
attempt to accomplish this task, showed that their 
elaborate structures, inspired from psychological based 
approaches, can offer more realistic and efficient 
representations. This leads us to deduce that it is certainly 
very beneficial to integrate the knowledge psychological 
research has accumulated on understanding the cognitive 
mechanisms of human leaming and all of the positive 
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results obtained by computational modelling theories in 
artificial intelligence. 

This paper describes our approach for representing the 
knowledge taught and the one acquired by learners 
through VL interactions. We propose representation 
structures inspired by cognitive theories that explain the 
human cognitive activity in terms of memory subsystems 
and their processes. The remainder of the article is 
organised as follows : First, we present OUT algebra VL 
for the problem solving of boolean reduction. Next, the 
representation structures of the knowledge incorporated 
within the VL are described. This is followed by some 
original aspects of our approach. Finally, we announce 
future work. 

2. The virtual lab environment 

The VL is realised according to an object-oriented 
design, implemented in lava. It demonstrates a problem 
solving organisation that attempts to model the leamer 
cognitive activity stored during the task accomplishment. 
Our suhject-matter domain is the algebraic boolean 
expressions and their simplification by means of 
reduction rules, which are generally tanght to 
undergraduate students’on first cycle of higher education. 
In OUT VL, preliminary notions, definitions and 
explanations constitute a necessary knowledge 
background (available through sections exploration via 
clicking buttons) to approach the boolean reduction 
problem. 

In the preliminary notions section, different boolean 
simplification rules are stated. By choosing particular rule 
in a combo-box menu, for example, the De-Morgan rule 
applied to a conjunction of two proposals (-@ & q) = (-p 
I -@), the latter is posted with a brief formal definition. In 
the explanation section, hints and thorough explanations 
on the boolean reduction rules suitable for usage are 
provided. In the examples section, examples are given. 
Those are generated randomly with variable degree of 
difficulty (from 1 to 5 )  chosen by the leamer. For 
example Figure 1 shows a complexity (fixed by the 
leamer) level 5 example provided by the tutor. 
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corresponding problem solving steps 

and the problem solving steps given by the system. 

Figure 3. A level 4 expression under reduction 
process, in the exercise section. 

Students can also enter, by means of a visual keyboard, 
any boolean expression they want and ask the system to 
solve it. Figure 2 illustrates a complexity level 3 example 
proposed by the leamer. The problem solving steps and 
the applied rules are shown on a blackboard. 

Generated andor personalised examples show optimal 
solutions to simplify boolean expressions and are 
provided to guide learner during the problem solving, 
which begins by clicking on the exercise button. 
Exercises, also with variable complexity levels, give 
opportunities to learner to practice tasks. Via the visual 
keyboard, students reduce an initial boolean expression 
(generated randomly) by choosing suitable simplification 
rules to apply in the order they want. For example, Figure 
3 shows a difficulty level 4 expression under 
simplification process by a teamer. The initial expression 
"(((-a&V) I (blv)) & ((-c&F) I (d&F)))" was reduced to 
"((V) & ((F) I (d&F)))". Other reduction rules must be 
applied from the last step to obtain a final reduced 
expression. Here, a student (Steve) was using the 
conjunction rule of a proposal with the "F" truth constant 
(F & p a F, where p is a proposal) to transform sub- 
expression "(d&F)" into "(F)". Diverse tutorial strategies 
are explored. Actually, in the case of erroneous rule 
choice (or application) on any of the sub-expressions, 
whose simplification leads from the initial given 
expression to the final simplified one, the system notifies 
the learner and shows berhim correct response. 

As we believe that students should not only learn 
theoretical contents and concepts of the domain but also 
how to handle their knowledge and the related skills in a 
practical world, our design idea enables students to 
explore the environment in dynamic interaction with the 
context as if they were really doing it in the classroom 
with a teacher monitoring. Because the VL is designed 
with the knowledge linked through buttons, students are 
able to determine their own learning paths through the 
materials which can be reviewed in any desired sequence. 
This provides learners a flexible learning environment for 
a non-guided exploration and assisted problem solving. 
Indeed, students can access all components - the domain 
knowledge, and problem solving activities - in non- 
linear ways. They can seek information in different 
manners. For example, orienting themselves to the case 
study by retrieving detailed case information, re-visiting 
previously explored components for additional ideas or 
reviewing prior knowledge and explanations. 

3. The knowledge representation structures 

If we have the ambition to endow an artificial system 
with competence in education and teaching, it is not 
possible to be unaware of all that concems the human 
training, cognition and memory. Rather than being a 



simple hardware device of data storage (as in the 
computer's case), the principal characteristic of the 
human memory is carrying out categorisation, 
generalisation and abstraction processes [5]. 

Basically, It has been argued that knowledge is 
encoded in various memory subsystems not according to 
their contents but according to the way in which these 
contents are handled and used, making the memory a 
large set of complex processes and modules in continual 
interactions [4]. Several cognitive psychology approaches 
divide these subsystems in three main sections. Each one 
of them presents particular type of knowledge such as, 
semantic [lo], procedural [2] and episodic knowledge 
[14]. TO structure and represent the knowledge, handled 
and used in our VL, we have been inspired by these 
cognitive theories, which attempt to model the human 
process of knowledge acquisition. 
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Figure 4. Semantic components of an expressions 
eauivalence. 

3.1. Semantic knowledge structuring 

Our model regards semantic knowledge as concepts 
taken in a broad sense. Thus, they can be any categoty 
of objects, relations or functions. Moreover, we subdivide 
concepts in two categories : primitive concepts and 
described concepts. The first is defmed as a syntactically 
non-split representation; i.e., primitive concept 
representation can not be divided into parts. For example, 
in Figure 4, which shows a boolean reduction example 
(with a difficulty level fixed to l), the symbol "a" is a 
non-split representation of the corresponding proposal. 
On the other hand, we define described concept as a 
syntactically decomposable representation. For example, 
the expression "alF" is a decomposable representation of 
proposal "a". It represents a disjunction between 

proposition "a" and the truth constant "F" (False), two 
primitive concepts. The symbol ''1" represents the 
disjunction logic operator (OR), and is a primitive 
concept. In this way, the semantic of a described 
concept is given by the semantics of its 
components and their relations or functions (which 
take those components as arguments to create the 
described concept). For example, as shown in the 
diagram illustrated by Figure 4, in the expression "(alF) 
U a", symbols "a" and "F" are associated to primitive 
objects (proposal and truth constant), the symbol "1'' is 
associated to primitive function (the disjunction) and the 
symbol 'I-" is associated to primitive relation (the 
equivalence). Finally, "(a1F) - a" is a described object 
having three components: "alF ", "-" and "a" and it 
represents an equivalence between two expressions. 

3.2. Procedural knowledge structuring 

In opposition to semantic knowledge, which can be 
expressed explicitly, procedural knowledge is inferred by 
a succession of actions achieved automatically - 
following intemal andor external stimuli perception - to 
reach desirable states [2]. A procedure can be seen as a 
mean of achieving a goal to satisfy a need, without using 
the attention resources. For example, procedural 
knowledge allow us to add automatically "25" and "13" 
(if our goal is to find the corresponding sum), without 
being obliged to recall the algorithm explicitly. i.e., 
making the sum of the units, the one of the tens and 
twinning the two preceding sums. During the boolean 
reduction process, substituting automatically "-V" by 
"F", making abstraction to the explicit call of the truth 
constant negation tule (-V e F, where "V" I "TRUE"), 
can be seen as procedural knowledge which was acquired 
by the repetitive doing. 

In our approach, we subdivide procedures in two main 
categories : primitive procedures and complex 
procedures. Executions of the first are seen as atomic 
actions. Those of the last can be done by sequences of 
actions, which satisfy scripts of goals. Each one of those 
actions results from a primitive procedure execution; and 
each one of those goals is perceived as an intention of 
the cognitive system. 

3.3. Episodic knowledge structuring 

Episodic memory retains details about our experiences 
and preserves temporal relations allowing the 
reconstruction of previously experienced events as well 
as the time and context in which they took place. In our 
approach, the episode representation is based on 
particular generic knowledge (goals) instantiation, 
retrieved from semantic memory. Episodic knowledge is 
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organised according to goals. Each episode specifies a 
goal that translates the student interest and gives a sense 
to the underlying events. These events are sub-episodes 
that correspond to subgoals realisation. The latter are 
specified by the procedure used to achieve the main goal. 
Thus, executions of procedures are encoded in episodic 
memory and each goal realisation is encoded in an 
episode. In this way, the learner episodic memory stores 
all facts during the training activities. Note that episode, 
seen as specific form of knowledge, has been extensively 
used in various approaches in a wide variety of domains; 
such as, modelling cognitive mechanisms of analogy- 
makiig [8], artificial intelligence planning [6 ] ,  
knowledge modelling and learner diagnosis within 
intelligent tutoring systems [ 151 and neuro-computing 
[W. 
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Figure 5. Two solving methods. 

In our model, the learner cognitive activity prediction is 
not determined systematically, in a static way, starting 
from herhis main goal. Generally, the complex procedure 
"P", which achieves a given goal "G", determines number 
and order of "G" subgoals, whose each one can be 
achieved, in tum, by a procedure (called, in this case, a 
"P" sub-procedure). The choice of "P" depends of the 
learner practices and preferences when s h e  achieves a 
task. This means that goal realisation can be made in 
various ways, by various scenarios of procedures 
execution sequences. Therefore, number and 
chronological order of "G" subgoals are not predefied. 
For example, when the learner goal is reducing "-(a I 
-V)", satisfying this goal amounts to find the simplest 
expression which is equivalent to the initial one. Figure 5 
shows two methods leading to the desirable final state. 
Here, steps correspond to transitions realisable by means 
of primitive procedures, whose each one is applied to 
satisfy a suhgoal and handles primitive andor described 
concepts (propositions and truth constants). In this case, 

procedural knowledge allowing to achieve the goal 
"reduce -(U I -v". is a complex procedure giving rise to 
two subgoals, according to method 1, and four subgoals, 
with method 2. If the expression is complex (for example, 
the difficulty level 3 expression "(((alV) & (-bl-F)) 1 
-(c&V)y), there can be various ways to reduce it. 
Therefore, number and order of applied procedures - and 
the concepts they handle - depend on the selected 
complex main procedure. This last constraint implies that 
number and order of subgoals, translating the learner 
interests, are not determined statically in advance. 
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Figure 6. The knowledge structures relationships. 

4. Original aspects 

We thii that it is practical to be inspired by a 
cognitive approach that attempts to model the human 
process of knowledge acquisition, to represent knowledge 
within our VL. To encode the knowledge to be taught, we 
use an architecture structured according to the human 
memory structures described earlier (semantic, procedural 
and episodic). We divide these structures into two 
categories : on one hand, semantic and procedural 
knowledge, common, potentially accessible and shared - 
with various mastery degrees - by all learners; and, on 
the other hand, episodic knowledge, specific for each 
learner and whose contents depend on the way with 
which the common knowledge (semantic and procedural) 
is perceived and handled. As shown in Figure 4, primitive 
units of semantic and procedural knowledge, chosen with 
a small level of granularity, are used to build complex 
knowledge entities which are .dynamically combined in 
order to represent the learner acquired knowledge. Figure 
6 shows a diagram that summarises our knowledge 
structures relationships. The dynamic aspect is seen in the 



non-predefined combinations between occurrences of 
concepts and the applied procedures banding them, 
which translate the leamer interests (goals). Traces of the 
leamer cognitive activity are structured as specific 
episodic knowledge. We use the episodic knowledge 
model - that the system formulates in its intemal 
representation of the leamer - to determine the mastery 
degree of procedural knowledge and the acquisition level 
of semantic knowledge. Retrieving the acquired 
knowledge has the advantage to permit to the tutor to 
impose, for example, a guided exercise and to force 
student to use and handle particular rules and/or concepts 
that s h e  is often mistaken when applying them. The tutor 
can also can build suggestions and examples well adapted 
to each leamer because they are built with specific and 
quite detailed cognitive elements that the leamer has. 

Another original aspect of our model is the explicit 
introduction of goals into the knowledge representation. 
Although they are treated by means of procedures, we 
consider goals are a special case of semantic knowledge 
that represents intentions behind the cognitive system 
actions. i.e., a goal is seen as a semantic knowledge 
which describes a state to be reached. Because learner’s 
reasoning depends crucially on herihis goals and bow 
likely s h e  thinks actions will be successful to achieve 
them [2], there exist a particular form of energy employed 
to acquire goals. That distinguishes them from any simple 
form of semantic knowledge. This distinction involves a 
different treatment for goals in the human cognitive 
architecture. We propose to treat goals explicitly to reify 
them as particular semantic knowledge which is totally 
distinct from those which represent objects, relations and 
functions. 

5. Conclusion 

We have presented an algebra virtual laboratory for 
the boolean reduction problem solving. We have 
described the representation structures of the knowledge 
incorporated within the lab. We have also underlined 
some original aspects of our present work. Further work 
will be focused on other interesting aspects. We are now 
investigating a new idea for integrating pedagogic and 
didactic knowledge in our knowledge representation 
model. We are also experimenting with reusable 
knowledge techniques to provide suitable and efficient 
knowledge use in similar contexts. 
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