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Abstract

There is a lack of practice sessions in distance learning 

courses, in which students can use the theoretical 

concepts seen in class. In this paper we present an 

implementation of a Robotics Virtual Laboratory in a 

Networked Virtual Environment (net-VE) with the 

capability of defining practice sessions that can be 

executed in a visual simulation of the environment.  

Several manipulator robots, mobile robots and furniture 

can populate the environment. A programming language 

for manipulators and mobile robots is presented. The 

language contains instructions to provide coordination 

between robot programs; an interface for defining a task 

as a set of conditions for executing programs has also 

been implemented. Teachers can assist students either by 

collaborating during the execution of the practice or 

writing a rule-base script for observing movements of the 

robots.

1. Introduction 

Distance learning has become a good solution for 

people who need a flexible teaching system without 

spatial or temporal limitations. Information technologies 

provide tools that allow communication between teachers 

and students.  Although by using these tools good courses 

can be implemented, there are usually no practical 

sessions complementing information given in the course 

[1].  On the other hand the investment needed to install a 

real laboratory is high and not all institutions can provide 

equipment for the student’s use: this is the case in 

robotics laboratories, automatic control laboratories and 

so forth.  Even when such laboratories are available, the 

investment has to be protected, so the laboratory must 

have a qualified assistant keeping guard, insuring the 

correct use of the equipment; students have to work 

carefully in order to avoid disasters causing irreversible 

damage to laboratory and equipment.  The idea of having 

a Virtual Laboratory is to provide training and learning 

tools for students, improving distance learning programs, 

reducing investment and providing a flexible 

experimental framework in which there is a diminished 

risk of damage caused by accidents.   

For our purpose, a Virtual Laboratory is a 

heterogeneous and distributed environment for accessing 

virtual or real equipment from remote places.  The 

advantages of a virtual laboratory include: cost reduction, 

transparency in simulation, expandability and risk 

reduction among others [2]. When using virtual 

equipment, the virtual laboratory consists of a Networked 

Virtual Environment (net-VE) allowing users to interact 

with each other. 

 A net-VE is a software system where multiple users 

interact in real time, wherever these users may be, 

including geographically different places [3].  Typically, 

each user has access to a computer that provides a 

graphical interface for the virtual world. A net-VE has a 

shared sense of space, a shared sense of presence, a 

shared sense of time, a communication mechanism and a 

sharing mechanism [3]. 

In the work described in this article, we use an object 

oriented and distributed architecture in order to have a 

net-VE, allowing teachers and students interact and 

collaborate in a visual simulated world.  The system 

includes several manipulators and mobile robot models 

that can be selected by users to create worlds in which 

practical exercises can be accomplished.  The teacher is 

able to define a practice session, and students are able to 

execute it and save the information for future 

consultation. 

A programming language is defined that can be used 

to program both manipulators and mobile robots.  We 

have also implemented an interface for teaching positions 

to manipulators (as is done with real robots with the teach 

pendant). Once defined, these positions can be parameters 

for the “move” instruction. 

The remainder of this paper is organized as follows: in 

Section 2 work related to net-VE and virtual laboratories 

is discussed; in Section 3 the net-VE used for the robotics 

virtual laboratory is briefly described, Sections 4 and 5 

explain how to define and execute practice sessions in our 

system; in Section 6 examples of practice sessions are 

shown and finally in Section 7 and 8 conclusions and 

future work are discussed. 
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2. Related Work 

Originally net-VE architectures were developed for 

military purposes (combat training simulations); examples 

of these architectures are DIS [3] and HLA [3].  

Subsequently, other net-VEs architectures where 

developed with academic purposes, allowing users 

interaction in a shared room in which can take place 

virtual meetings or conferences.  Two examples of this 

kind of architectures are DIVE [4] and INVITE [5].  In 

this work we use a modified version of OODVR, another 

net-VE architecture.  In [6] a more detailed comparison 

between OODVR and other net-VE systems is presented.

Several different applications have been called  

“virtual laboratories” in different areas (chemistry, 

physics, power electronics, control systems, robotics, 

manufacturing, etc).  Some of these virtual laboratories 

can’t be accessed by more than one user at the same time 

[1, 7]; these are stand- alone applications do not permit 

collaborative work.  Other types of virtual laboratories 

have been created having as their main purpose to be used 

by a lot of people around the world, so these labs have 

been implemented on the Internet so as to permit wide 

access to them.  Examples of this type of labs can be 

found in [8, 9, 10, 11, 12].  However, even if these virtual 

labs are on the Internet and multiple users can access the 

applications, there is no collaboration between all the 

users that are working at the same time: every user is 

working by himself without knowing anything about the 

existence or activities of the others. Finally some virtual 

laboratories have been implemented using net-VEs, and 

these laboratories provide collaborative environments in 

which users can interact. In the case of E-manufacturing 

[13], several users can plan manufacturing process and 

define layouts.  Another example is a testbed for mobile 

robots [14].  However these last two examples do not 

allow the professor or student the possibility of defining 

or executing practice sessions. 

3. Object Oriented Distributed Virtual 

Reality Architecture applied in Virtual 

Laboratories (OODVR++a) 

The Object Oriented Distributed Virtual Reality 

Architecture (OODVR) is a net-VE architecture 

developed for general-purpose applications. This 

architecture was modified in order to provide a 

collaborative visual simulated environment for robotics 

virtual laboratories and this last one was called 

OODVR++a.

OODVR was designed and implemented having as an 

objective a distributed environment for simulations, 

where the complete simulation is integrated by different 

elements. This architecture assumes the participation of 

several computers in a complete simulation, each called 

“participant”, that can contribute with one or more 

“entities” or modules to the simulation. The entities 

belonging to a given participant are called “local entities” 

if executing locally and “proxy entities” if executing on 

the other machines [6]. 

OODVR was modified in order to have more tools that 

would allow using it in the implementation of robotic 

virtual laboratories.  OODVR++a allows the entrance of 

entities at any time during the simulation.   Several 

modules were also integrated to OODVR to create 

OODVR++a:

Database.

Chat. 

Simple control mechanism. 

Simulation clock. 

Rule-base scripts. 

The database was integrated in order to save robot 

configurations, environments, programs and practice 

sessions. This saved information allows consulting of 

previous practice sessions, loading unfinished programs 

and performing an asynchronous learning. In the case of 

robot configurations, the database has the information 

about degrees of freedom, 3D models, number of links, 

pieces of each link and type of each robot.  This approach 

allows us to add different manipulators or mobile robots 

models to the database that can be used in the simulation 

without recompiling the complete application. At this 

time, in the database exist five manipulators (Mitsubishi 

EXR, CRSA465, Amatrol Jupiter XL, Puma 560, 

Amatrol ASRS) and two mobile robots (AmigoBot, 

Pioneer).

In order to provide a communication channel between 

users during simulation, a text chat was added and the 

users may collaborate in the practice sessions. 

A simple control mechanism was implemented in 

order to allow only one user to control the same robot at 

the same time as occurs in real laboratories.

A simulation clock was also implemented to allow 

movement synchronization of local entity robots and 

proxy robots.  This has to be done, because of latency on 

computer networks. 
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Figure 1. OODVR++a architecture. 

Finally, an important feature of OODVR++a is the 

capability of inserting rule-base scripts in which users can 

implement conditions that will be checked every five 

seconds.  These allow users to write simple agents for 

monitoring certain positions, velocities or movement in 

robots.  The scripts only have to be placed in a directory 

and there is no need of compiling the application.  Figure 

1, shows the OODVR++a architecture. 

4. Defining Practice sessions 

In order to define a practice session, users must first 

create and save an environment in which the practice will 

be take place.  The user or users simply add entities in the 

desired positions, after that only one user saves the 

environment as a new world that will be used later.  

Saving the environment avoids the creation of a new 

environment every time the simulation is run.  Figure 2 

shows an environment with several manipulators and 

mobile robots. 

After the user has created and defined an environment, 

a new practice can be created; a dialog window asks for 

the user to specify: 

The name of the practice,  

The environment that will be used and  

The file containing the instructions of the practice.  

5. Executing Practice sessions

Once the practice has been defined the users can begin 

the execution to complete the assignment described in the 

practice session.  The execution can be done immediately 

after the definition or can be done at a different time if 

users in the simulation load previously defined practice 

sessions.

Figure 2. A world populated with manipulators and  

               mobile robots. 

Each user connected to the simulation can start 

working on a different robot; every one can program a 

robot just as a team working in the same physical 

laboratory would.  When all the programs have been 

finished, only one user can define a task combining the 

programs; all users can see the execution of the task.  The 

individual programs of each robot and the definition of 

the task can be saved in order to be loaded in a different 

simulation. 

We next explain how to program the robots, how to 

define a task and how a script can provide a kind of 

assistance.

5.1. Programming Virtual Robots 

Each virtual robot (manipulator or mobile) in the 

visual simulation has an interface allowing users to teach 

positions (in the case of manipulators), to write a 

program, to compile and to execute that program on the 

virtual robot.  

5.1.1. Teaching positions to a Robot. When people 

work with real manipulators, they use a teach pendant in 

order to define fixed positions that will be useful for 

programming a sequence of movements going to 

individual fixed positions. This particular feature is 

implemented in the virtual laboratory using a button 

window (one for each robot) to move each degree of 

freedom until the desired position is reached.  After that 

another button has to be pressed indicating that this 

particular position has to be added in the current list of 

positions.  Each robot can have several lists of positions 

associated to it; these lists can be loaded any time and can 

be used in all the practice sessions.  The information 

related to the lists of position is saved on the database.  In 
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Figure 3a we see the button window for a robot and in 

Figure 3b the window having a list of positions. 

(a)

(b)

Figure 3. (a) Button window to control each degree of

                    freedom. 

               (b) Programming window with a list of  

                    positions on the right side. 

During the execution process each robot reaches a 

fixed position indicated in a list by interpolating the 

current position with the position specified position. The 

difference between the angles of each degree of freedom 

of the current position and the angles of each degree of 

freedom of the new position is calculated in order to 

know how much each link will move. 

5.1.2. Programming Language. We decided to use the 

same programming language for both manipulators and 

mobile robots.  The main reason is didactic; users have to 

learn only one language syntax.  Using real robots, a 

different language for each one is needed.  Depending on 

the robot system, the language used to program robots 

can be like an assembly language or a high level 

language.  The main disadvantage of using a single 

language is having the need to translate the program for 

virtual robots from our language to each robot language.  

However an automatic translation of programs could be 

implemented to particular languages of real robots. 

Users at any time during the simulation can create new 

programs and change existing programs; they also can 

compile and execute different programs on each robot.  

One of the main advantages of the language design is the 

fact that each single program is saved in a file and 

compiled “on the fly” when the user executes it the first 

time, so the complete simulation does not have to be 

compiled with a predefined group of robot programs. 

Control structure 

Or instruction

Description

if ….. else Decision control structure. 

while  Control structure for cycling. 

move (p) Moves robot to position p. 

move (f, g) Moves degree of freedom f, g units 

speed(v) Defines speed v for the robot 

movements. 

flag(v) Assigns v to the robot flag. 

wcelflag(n, v) Writes v on the n th cell flag. 

rcelflag(n, v) Reads n th cell flag and keep the 

value in v.

wait(m) Waits m milliseconds to execute 

the next instruction. 

Table 1. Control structures and instructions. 

Each robot has a flag that can be set by the robot, but 

all robots in the world can read this flag, so the flag can 

be used to indicate different internal state of the robot.  

There also exists a ten–flag buffer for the environment 

(called the cell flags). This set of flags can be set and read 

by all the robots and helps the user in implementing 

coordination between programs.  For example, a robot 

could set a value of ‘6’ in the first position of the buffer, 

and other robots wait for that number ‘6’ to begin a list of 

instructions.  Table 1 shows a list of the control structures 

and instructions defined in the language. The language 

also permits declaring integer variables and arithmetic 

operations. 

Each program is saved in a file and an entry on the 

database is also added to relate a program to a robot.  All 

programs can be seen for any practice session. 

Figure 3b shows on the left side of the window the 

program editor interface in the system. 

5.2. Coordinating Robots: Defining a task 

In the previous section we briefly described how the 

rcelflag and the wcelflag instructions can be used to 

coordinate program executions between robots.  However 

we implemented another interface for defining starting 

conditions for a set of programs that will define a task, 

this is specially useful for defining time conditions and 

parallel execution of programs.  Once users have finished 

with the individual programs for each robot, one user can 

define the task.  
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Figure 4.  Interface for defining tasks.  Four starting

                conditions, from top: N, T, S, F. 

Figure 4 shows the interface in which appears as a 

table with the information that has to be filled.  The first 

three columns define the starting condition, and the last 

three columns define the robot that will execute the 

program with a list of positions.  There are four different 

starting conditions, note that if no condition is specified 

for all robots, all programs will be executed at the same 

time in parallel.  The conditions are: 

None: Denoted with N, and this means there is no 

condition to begin the execution of the program.  

The program will start at the beginning of the task. 

Time:  Denoted with T, and the user must specify a 

time t in seconds.  This means that a program will 

be started after t seconds from the initial time in 

which the task began. 

Status:  Denoted with S, and the user must specify 

another robot’s state in order to begin the 

execution of the current program.  We consider 

two different status: 1, a robot has started the 

execution of a program and 2, a robot has finished 

the execution of a program. 

Flag:  Denoted with F, and the user must specify 

the flag of which robot has to be read with a 

specific value in order to begin the execution of the 

current program. 

Users can save the defined task for a practice, for 

future consultations.  No more than one task can be saved 

for a practice. 

5.3. Assistance during practice session execution

During the execution of the practice, several users can 

be working at the same time, and the teacher can be 

running the same simulation in order to provide assistance 

to the students. The teacher can be a spectator only 

watching what students do, and using the chat interface, 

the teacher can communicate to the students providing 

them help or corrections.   

However it is possible that teachers do not have 

enough time for attending to each of the practice sessions, 

so the system provides the possibility of adding a rule-

based script in order to monitor certain actions of the 

students.  The script is a JESS file (JESS [15] is a expert 

system shell in Java); teachers have access to the robot 

class methods in order to define rules.  The use of these 

scripts for the moment is only limited to check some 

properties of each robot.  If teacher needs a more 

intelligent assistant, other methods have to be 

implemented in the robot class, and more classes have to 

be developed to control or check other entities than 

robots. 

6. Practice Session Example 

In this example, there is a complete manufacturing cell 

with three robots: a Mitsubishi EXR, an Amatrol 

JupiterXL and a Puma 560.  Also in the environment 

there exist a conveyor band, two tables and a lathe.  The 

user has to complete the following task: 

The conveyor band must go to the Puma and wait. 

Puma must take a cylinder and put it inside the 

lathe and wait until a piece is finished. 

Puma must put the piece on the conveyor band. 

The conveyor band must go to the Jupiter Amatrol 

and wait. 

Jupiter Amatrol must take a stamp inside the box 

on its table, and put on the piece. 

The conveyor band must go to the Mitsubishi and 

wait.

Mitsubishi must take a piece of cloth from the box 

next to it, go to the piece on the conveyor and 

clean it. Then Mitsubishi must throw the piece of 

cloth to the box on the floor. 

Finally the conveyor band must return to its 

original position. 

A code fragment, for the conveyor band is shown: 
int a           //variable declaration 
a = 0 
move(2,600)    //go to the front 
move(1, -1050) //go to the right 
flag (1)      //Indicating Puma to begin 
rcelflag(1,a) //Waiting for the Puma 
while(a == 0){ 
      wait(500) 
      rcelflag(1,a) 
}
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(a)

(b)

(c)

Figure 5. Snapshots taken during the practice execution. 

(a) Puma working with the piece. 

(b) Amatrol Jupiter stamping. 

(c) Mitsubishi beginning its work. 

In figure 5, we show s set of pictures taken during the 

execution of the defined task. 

This practice session has been tested using a three 

participant simulation.  Manipulating several robots at the 

same time during the execution, does not affect the 

response of the visual simulation. However, several tests 

have to be done in order to determine how the network 

latency affects the performance of the system.   

Only four students that provide some suggestions and 

changes have tested the system.  In order to probe the 

feasibility of the system, a test with a group of students in 

Robotics Courses has to be done as a future work. 

7. Conclusions

Using this robotics virtual laboratory is an option for 

creating practice sessions that would help in distance 

learning courses.  The system presented is a visual 

simulation in which can be used for training without 

having risks or causing damage in the equipment. The 

net-VE architecture allows the collaboration between 

users during the execution of the practice and remote 

access to a simulation.  The language defined for use in 

the system allows programming the robots and there 

exists the possibility of defining task as a set of programs. 

8. Future Work 

There are many things that could be improved. The 

programming language can be extended in order to permit 

task configuration without using the current interface. We 

are also considering the possibility of adding the use of 

maps in the language that could be used to simulate 

sensors for the robots.  The scripts used to define a simple 

assistant must be generalized in order to support a more 

complex assistant and possibly the ability of give 

explanations. The process of defining new practice 

sessions could be improved adding an interface to 

introduce the instructions without using a text file. 
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