
Defining and Executing Practice Sessions in a Robotics Virtual Laboratory

Lourdes Muñoz-Gómez, Moisés Alencastre-Miranda, Isaac Rudomín

Instituto Tecnológico y de Estudios Superiores de Monterrey. Campus Estado de México.

Carretera Lago de Guadalupe Km 3.5, Atizapán de Zaragoza, Estado de México, CP 52926

{00709911,00471699}@academ01.cem.itesm.mx, rudomin@itesm.mx

Abstract

There is a lack of practice sessions in distance learning

courses, in which students can use the theoretical

concepts seen in class. In this paper we present an

implementation of a Robotics Virtual Laboratory in a

Networked Virtual Environment (net-VE) with the

capability of defining practice sessions that can be

executed in a visual simulation of the environment.

Several manipulator robots, mobile robots and furniture

can populate the environment. A programming language

for manipulators and mobile robots is presented. The

language contains instructions to provide coordination

between robot programs; an interface for defining a task

as a set of conditions for executing programs has also

been implemented. Teachers can assist students either by

collaborating during the execution of the practice or

writing a rule-base script for observing movements of the

robots.

1. Introduction

Distance learning has become a good solution for

people who need a flexible teaching system without

spatial or temporal limitations. Information technologies

provide tools that allow communication between teachers

and students. Although by using these tools good courses

can be implemented, there are usually no practical

sessions complementing information given in the course

[1]. On the other hand the investment needed to install a

real laboratory is high and not all institutions can provide

equipment for the student’s use: this is the case in

robotics laboratories, automatic control laboratories and

so forth. Even when such laboratories are available, the

investment has to be protected, so the laboratory must

have a qualified assistant keeping guard, insuring the

correct use of the equipment; students have to work

carefully in order to avoid disasters causing irreversible

damage to laboratory and equipment. The idea of having

a Virtual Laboratory is to provide training and learning

tools for students, improving distance learning programs,

reducing investment and providing a flexible

experimental framework in which there is a diminished

risk of damage caused by accidents.

For our purpose, a Virtual Laboratory is a

heterogeneous and distributed environment for accessing

virtual or real equipment from remote places. The

advantages of a virtual laboratory include: cost reduction,

transparency in simulation, expandability and risk

reduction among others [2]. When using virtual

equipment, the virtual laboratory consists of a Networked

Virtual Environment (net-VE) allowing users to interact

with each other.

 A net-VE is a software system where multiple users

interact in real time, wherever these users may be,

including geographically different places [3]. Typically,

each user has access to a computer that provides a

graphical interface for the virtual world. A net-VE has a

shared sense of space, a shared sense of presence, a

shared sense of time, a communication mechanism and a

sharing mechanism [3].

In the work described in this article, we use an object

oriented and distributed architecture in order to have a

net-VE, allowing teachers and students interact and

collaborate in a visual simulated world. The system

includes several manipulators and mobile robot models

that can be selected by users to create worlds in which

practical exercises can be accomplished. The teacher is

able to define a practice session, and students are able to

execute it and save the information for future

consultation.

A programming language is defined that can be used

to program both manipulators and mobile robots. We

have also implemented an interface for teaching positions

to manipulators (as is done with real robots with the teach

pendant). Once defined, these positions can be parameters

for the “move” instruction.

The remainder of this paper is organized as follows: in

Section 2 work related to net-VE and virtual laboratories

is discussed; in Section 3 the net-VE used for the robotics

virtual laboratory is briefly described, Sections 4 and 5

explain how to define and execute practice sessions in our

system; in Section 6 examples of practice sessions are

shown and finally in Section 7 and 8 conclusions and

future work are discussed.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

2. Related Work

Originally net-VE architectures were developed for

military purposes (combat training simulations); examples

of these architectures are DIS [3] and HLA [3].

Subsequently, other net-VEs architectures where

developed with academic purposes, allowing users

interaction in a shared room in which can take place

virtual meetings or conferences. Two examples of this

kind of architectures are DIVE [4] and INVITE [5]. In

this work we use a modified version of OODVR, another

net-VE architecture. In [6] a more detailed comparison

between OODVR and other net-VE systems is presented.

Several different applications have been called

“virtual laboratories” in different areas (chemistry,

physics, power electronics, control systems, robotics,

manufacturing, etc). Some of these virtual laboratories

can’t be accessed by more than one user at the same time

[1, 7]; these are stand- alone applications do not permit

collaborative work. Other types of virtual laboratories

have been created having as their main purpose to be used

by a lot of people around the world, so these labs have

been implemented on the Internet so as to permit wide

access to them. Examples of this type of labs can be

found in [8, 9, 10, 11, 12]. However, even if these virtual

labs are on the Internet and multiple users can access the

applications, there is no collaboration between all the

users that are working at the same time: every user is

working by himself without knowing anything about the

existence or activities of the others. Finally some virtual

laboratories have been implemented using net-VEs, and

these laboratories provide collaborative environments in

which users can interact. In the case of E-manufacturing

[13], several users can plan manufacturing process and

define layouts. Another example is a testbed for mobile

robots [14]. However these last two examples do not

allow the professor or student the possibility of defining

or executing practice sessions.

3. Object Oriented Distributed Virtual

Reality Architecture applied in Virtual

Laboratories (OODVR++a)

The Object Oriented Distributed Virtual Reality

Architecture (OODVR) is a net-VE architecture

developed for general-purpose applications. This

architecture was modified in order to provide a

collaborative visual simulated environment for robotics

virtual laboratories and this last one was called

OODVR++a.

OODVR was designed and implemented having as an

objective a distributed environment for simulations,

where the complete simulation is integrated by different

elements. This architecture assumes the participation of

several computers in a complete simulation, each called

“participant”, that can contribute with one or more

“entities” or modules to the simulation. The entities

belonging to a given participant are called “local entities”

if executing locally and “proxy entities” if executing on

the other machines [6].

OODVR was modified in order to have more tools that

would allow using it in the implementation of robotic

virtual laboratories. OODVR++a allows the entrance of

entities at any time during the simulation. Several

modules were also integrated to OODVR to create

OODVR++a:

Database.

Chat.

Simple control mechanism.

Simulation clock.

Rule-base scripts.

The database was integrated in order to save robot

configurations, environments, programs and practice

sessions. This saved information allows consulting of

previous practice sessions, loading unfinished programs

and performing an asynchronous learning. In the case of

robot configurations, the database has the information

about degrees of freedom, 3D models, number of links,

pieces of each link and type of each robot. This approach

allows us to add different manipulators or mobile robots

models to the database that can be used in the simulation

without recompiling the complete application. At this

time, in the database exist five manipulators (Mitsubishi

EXR, CRSA465, Amatrol Jupiter XL, Puma 560,

Amatrol ASRS) and two mobile robots (AmigoBot,

Pioneer).

In order to provide a communication channel between

users during simulation, a text chat was added and the

users may collaborate in the practice sessions.

A simple control mechanism was implemented in

order to allow only one user to control the same robot at

the same time as occurs in real laboratories.

A simulation clock was also implemented to allow

movement synchronization of local entity robots and

proxy robots. This has to be done, because of latency on

computer networks.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 1. OODVR++a architecture.

Finally, an important feature of OODVR++a is the

capability of inserting rule-base scripts in which users can

implement conditions that will be checked every five

seconds. These allow users to write simple agents for

monitoring certain positions, velocities or movement in

robots. The scripts only have to be placed in a directory

and there is no need of compiling the application. Figure

1, shows the OODVR++a architecture.

4. Defining Practice sessions

In order to define a practice session, users must first

create and save an environment in which the practice will

be take place. The user or users simply add entities in the

desired positions, after that only one user saves the

environment as a new world that will be used later.

Saving the environment avoids the creation of a new

environment every time the simulation is run. Figure 2

shows an environment with several manipulators and

mobile robots.

After the user has created and defined an environment,

a new practice can be created; a dialog window asks for

the user to specify:

The name of the practice,

The environment that will be used and

The file containing the instructions of the practice.

5. Executing Practice sessions

Once the practice has been defined the users can begin

the execution to complete the assignment described in the

practice session. The execution can be done immediately

after the definition or can be done at a different time if

users in the simulation load previously defined practice

sessions.

Figure 2. A world populated with manipulators and

 mobile robots.

Each user connected to the simulation can start

working on a different robot; every one can program a

robot just as a team working in the same physical

laboratory would. When all the programs have been

finished, only one user can define a task combining the

programs; all users can see the execution of the task. The

individual programs of each robot and the definition of

the task can be saved in order to be loaded in a different

simulation.

We next explain how to program the robots, how to

define a task and how a script can provide a kind of

assistance.

5.1. Programming Virtual Robots

Each virtual robot (manipulator or mobile) in the

visual simulation has an interface allowing users to teach

positions (in the case of manipulators), to write a

program, to compile and to execute that program on the

virtual robot.

5.1.1. Teaching positions to a Robot. When people

work with real manipulators, they use a teach pendant in

order to define fixed positions that will be useful for

programming a sequence of movements going to

individual fixed positions. This particular feature is

implemented in the virtual laboratory using a button

window (one for each robot) to move each degree of

freedom until the desired position is reached. After that

another button has to be pressed indicating that this

particular position has to be added in the current list of

positions. Each robot can have several lists of positions

associated to it; these lists can be loaded any time and can

be used in all the practice sessions. The information

related to the lists of position is saved on the database. In

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 3a we see the button window for a robot and in

Figure 3b the window having a list of positions.

(a)

(b)

Figure 3. (a) Button window to control each degree of

 freedom.

 (b) Programming window with a list of

 positions on the right side.

During the execution process each robot reaches a

fixed position indicated in a list by interpolating the

current position with the position specified position. The

difference between the angles of each degree of freedom

of the current position and the angles of each degree of

freedom of the new position is calculated in order to

know how much each link will move.

5.1.2. Programming Language. We decided to use the

same programming language for both manipulators and

mobile robots. The main reason is didactic; users have to

learn only one language syntax. Using real robots, a

different language for each one is needed. Depending on

the robot system, the language used to program robots

can be like an assembly language or a high level

language. The main disadvantage of using a single

language is having the need to translate the program for

virtual robots from our language to each robot language.

However an automatic translation of programs could be

implemented to particular languages of real robots.

Users at any time during the simulation can create new

programs and change existing programs; they also can

compile and execute different programs on each robot.

One of the main advantages of the language design is the

fact that each single program is saved in a file and

compiled “on the fly” when the user executes it the first

time, so the complete simulation does not have to be

compiled with a predefined group of robot programs.

Control structure

Or instruction

Description

if ….. else Decision control structure.

while Control structure for cycling.

move (p) Moves robot to position p.

move (f, g) Moves degree of freedom f, g units

speed(v) Defines speed v for the robot

movements.

flag(v) Assigns v to the robot flag.

wcelflag(n, v) Writes v on the n th cell flag.

rcelflag(n, v) Reads n th cell flag and keep the

value in v.

wait(m) Waits m milliseconds to execute

the next instruction.

Table 1. Control structures and instructions.

Each robot has a flag that can be set by the robot, but

all robots in the world can read this flag, so the flag can

be used to indicate different internal state of the robot.

There also exists a ten–flag buffer for the environment

(called the cell flags). This set of flags can be set and read

by all the robots and helps the user in implementing

coordination between programs. For example, a robot

could set a value of ‘6’ in the first position of the buffer,

and other robots wait for that number ‘6’ to begin a list of

instructions. Table 1 shows a list of the control structures

and instructions defined in the language. The language

also permits declaring integer variables and arithmetic

operations.

Each program is saved in a file and an entry on the

database is also added to relate a program to a robot. All

programs can be seen for any practice session.

Figure 3b shows on the left side of the window the

program editor interface in the system.

5.2. Coordinating Robots: Defining a task

In the previous section we briefly described how the

rcelflag and the wcelflag instructions can be used to

coordinate program executions between robots. However

we implemented another interface for defining starting

conditions for a set of programs that will define a task,

this is specially useful for defining time conditions and

parallel execution of programs. Once users have finished

with the individual programs for each robot, one user can

define the task.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 4. Interface for defining tasks. Four starting

 conditions, from top: N, T, S, F.

Figure 4 shows the interface in which appears as a

table with the information that has to be filled. The first

three columns define the starting condition, and the last

three columns define the robot that will execute the

program with a list of positions. There are four different

starting conditions, note that if no condition is specified

for all robots, all programs will be executed at the same

time in parallel. The conditions are:

None: Denoted with N, and this means there is no

condition to begin the execution of the program.

The program will start at the beginning of the task.

Time: Denoted with T, and the user must specify a

time t in seconds. This means that a program will

be started after t seconds from the initial time in

which the task began.

Status: Denoted with S, and the user must specify

another robot’s state in order to begin the

execution of the current program. We consider

two different status: 1, a robot has started the

execution of a program and 2, a robot has finished

the execution of a program.

Flag: Denoted with F, and the user must specify

the flag of which robot has to be read with a

specific value in order to begin the execution of the

current program.

Users can save the defined task for a practice, for

future consultations. No more than one task can be saved

for a practice.

5.3. Assistance during practice session execution

During the execution of the practice, several users can

be working at the same time, and the teacher can be

running the same simulation in order to provide assistance

to the students. The teacher can be a spectator only

watching what students do, and using the chat interface,

the teacher can communicate to the students providing

them help or corrections.

However it is possible that teachers do not have

enough time for attending to each of the practice sessions,

so the system provides the possibility of adding a rule-

based script in order to monitor certain actions of the

students. The script is a JESS file (JESS [15] is a expert

system shell in Java); teachers have access to the robot

class methods in order to define rules. The use of these

scripts for the moment is only limited to check some

properties of each robot. If teacher needs a more

intelligent assistant, other methods have to be

implemented in the robot class, and more classes have to

be developed to control or check other entities than

robots.

6. Practice Session Example

In this example, there is a complete manufacturing cell

with three robots: a Mitsubishi EXR, an Amatrol

JupiterXL and a Puma 560. Also in the environment

there exist a conveyor band, two tables and a lathe. The

user has to complete the following task:

The conveyor band must go to the Puma and wait.

Puma must take a cylinder and put it inside the

lathe and wait until a piece is finished.

Puma must put the piece on the conveyor band.

The conveyor band must go to the Jupiter Amatrol

and wait.

Jupiter Amatrol must take a stamp inside the box

on its table, and put on the piece.

The conveyor band must go to the Mitsubishi and

wait.

Mitsubishi must take a piece of cloth from the box

next to it, go to the piece on the conveyor and

clean it. Then Mitsubishi must throw the piece of

cloth to the box on the floor.

Finally the conveyor band must return to its

original position.

A code fragment, for the conveyor band is shown:
int a //variable declaration
a = 0
move(2,600) //go to the front
move(1, -1050) //go to the right
flag (1) //Indicating Puma to begin
rcelflag(1,a) //Waiting for the Puma
while(a == 0){
 wait(500)
 rcelflag(1,a)
}

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

(a)

(b)

(c)

Figure 5. Snapshots taken during the practice execution.

(a) Puma working with the piece.

(b) Amatrol Jupiter stamping.

(c) Mitsubishi beginning its work.

In figure 5, we show s set of pictures taken during the

execution of the defined task.

This practice session has been tested using a three

participant simulation. Manipulating several robots at the

same time during the execution, does not affect the

response of the visual simulation. However, several tests

have to be done in order to determine how the network

latency affects the performance of the system.

Only four students that provide some suggestions and

changes have tested the system. In order to probe the

feasibility of the system, a test with a group of students in

Robotics Courses has to be done as a future work.

7. Conclusions

Using this robotics virtual laboratory is an option for

creating practice sessions that would help in distance

learning courses. The system presented is a visual

simulation in which can be used for training without

having risks or causing damage in the equipment. The

net-VE architecture allows the collaboration between

users during the execution of the practice and remote

access to a simulation. The language defined for use in

the system allows programming the robots and there

exists the possibility of defining task as a set of programs.

8. Future Work

There are many things that could be improved. The

programming language can be extended in order to permit

task configuration without using the current interface. We

are also considering the possibility of adding the use of

maps in the language that could be used to simulate

sensors for the robots. The scripts used to define a simple

assistant must be generalized in order to support a more

complex assistant and possibly the ability of give

explanations. The process of defining new practice

sessions could be improved adding an interface to

introduce the instructions without using a text file.

9. Acknowledgements

The work described in this paper is part of the project

“Virtual Laboratories” granted by REDII- CONACyT.

10. References

[1] J. Sánchez, F. Morilla, et al. “Virtual and Remote

Control Labs Using Java: A Qualitative Approach”. IEEE

Control Magazine, April 2002.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

[2] M. Gertz, D. Stewart, et al. “A Human-Machine

Interface for Distributed Virtual Laboratories”. In IEEE

Robotics & Automation Magazine. December, 1994.

[3] S. Singhal, et. al., Networked Virtual Environments,

Design and Implementation, ACM Press, 1999.

[4] T. Capin et. al. Avatars in Networked Virtual

Environments, John Wiley & Sons, LTD, 1999.

[5] C. Bouras and G. Horni. “Architectures supporting e-

Learning through Collaborative Virtual Environments:

The case of INVITE”. In IEEE International Conference

on Advanced Learning Technologies, Madison, WI,

USA, 2001.

[6] I. Rudomín, L. Muñoz, and M. Alencastre. “Virtual

Laboratory”. In MICAI/TAINA, Mérida, México, 2002.

[7] A.C. Catlin, et. al., “SoftLab : A virtual laboratory

framework for computacional science”, Technical

Report, 1997.

[8] S. Chakaven, et. al., “DELTA´s Virtual Physics

Laboratory. A Comprehensive Learning Plataform on

Physics & Astronomy”. In Visualization, San Francisco,

CA, USA, 1999.

[9] K.W. Cheng, et. al. “Virtual Laboratory Development

for Teaching Power Electronics”. In Power Electronics

Specialists Conference, Cairns, Australia, 2002.

[10] A. Speck and H. Klaeren, “RoboSiM: Java 3D Robot

Visualization”, In Proceeding of 25th annual Conference

of the IEEE (IECON), San José, CA, USA, 1999, Vol. 2,

p. 821-826.

[11] O. Michel, P. Saucy, et. al. “KhepOnTheWeb: An

Experimental Demonstrator in Telerobotics and Virtual

Reality”. In Proceeding of International Conference on

Virtual Systems and MultiMedia (VSMM), Geneva,

Switzerland, 1997.

[12] L. Queiroz, M. Bergerman, et. al. “A Robotics and

Computer Vision Virtual Laboratory”. In AMC, Coimbra,

Portugal, 1998, p. 694-699.

[13] L. Jin and I. Oraifige, “E-manufacturing in

Networked Virtual Environments”. In IEEE,

International Conference on Systems, Man and

Cybernetics, Tucson, AZ, USA, 2001.

[14] D. Gracanin, M. Matijasevic, et. al. “Virtual Reality

Testbed for Mobile Robots”. In ISIE Bled, Slovenia,

1999.

[15]JESS HomePage, http://herzberg.ca.sandia.gov/jess/,

Last access December, 2002.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

