
CICLOPS: COMPUTATIONAL INTELLIGENCE COLLABORATIVE LABORATORY OF
PANTOLOGICAL SOFTWARE

ES Peer, AP Engelbrecht, G Pampará, BS Masiye

Department of Computer Science, University of Pretoria
Pretoria, South Africa

espeer@cs.up.ac.za, engel@cs.up.ac.za, gpampara@cs.up.ac.za, bmasiye@cs.up.ac.za

ABSTRACT

This paper presents CiClops, which is a virtual laboratory
for performing experiments, using Computational Intelli-
gence (CI) algorithms, that scale over multiple workstations.
Additionally, the paper introduces CIlib, which is an open
source library of CI algorithms, currently containing mostly
particle swarm optimization (PSO) and ant colony optimiza-
tion (ACO) algorithms. The main purpose of CiClops is
to specify CI algorithms to solve optimization problems,
to schedule execution of large numbers of simulations on
a cluster of workstations, and to archive all empirical data
for analysis. The objective of this paper is to launch both
CiClops and CIlib, and to emphasize to the CI (most specif-
ically the swarm intelligence) research community the ad-
vantages of using these tools.

1. INTRODUCTION

The computational intelligence (CI) research field is broad
and encompasses a very wide array of research interests.
The formulation of a precise definition for Computational
Intelligence (CI) and how it relates to the broader Artificial
Intelligence (AI) field is a challenging task. Arguably, CI
comprises of those paradigms in AI that relate to some kind
of biological or naturally occurring system. General con-
sensus suggests that these paradigms are neural networks,
evolutionary computing, swarm intelligence and fuzzy sys-
tems [1, 2, 3, 7]. Neural networks are based on their bi-
ological counterparts in the human nervous system. Sim-
ilarly, evolutionary computing draws heavily on the prin-
ciples of Darwinian evolution observed in nature. Swarm
intelligence, in turn, is modeled on the social behaviour of
insects and the choreography of birds flocking. Finally, hu-
man reasoning using imprecise, or fuzzy, linguistic terms is
approximated by fuzzy systems. Figure 1 shows these four
primary branches of CI and illustrates that hybrids between
the various paradigms are possible.

Research in these CI areas is by necessity empirical and
as such dictates code implementation and simulation. It is

Neural Networks

Swarm Intelligence

Evolutionary Computing

Fuzzy Systems

Hybrid Approaches

Figure 1. Computational intelligence paradigms

in this vain that a software framework, CIlib and CiClops
are proposed as a flexible, efficient and adaptable empirical
CI research tool. This paper aims to introduce, motivate and
explain the capabilities and implementation specifics of the
framework.

The rest of the paper is organised as follows: Section 2
provides a detailed motivation for the development of the
CI framework. The CI library, CIlib, is discussed in Sec-
tion 3. The simulation environment, CiClops, is introduced
in Section 4.

2. MOTIVATION

The Computational Intelligence Research Group1 at the Uni-
versity of Pretoria (CIRG@UP) has recently started an ini-
tiative to develop an extensive library of CI algorithms, mainly
to facilitate the research efforts of the group. Additionally,
a simulation and analysis environment has been developed
to execute vast numbers of simulations which implement
CI algorithms, and to process the large amounts of gener-
ated empirical data. The two tools have been called re-
spectively, CIlib (Computational Intelligence library) and
CiClops (Computational Intelligence Collaborative Labora-
tory of Pantological Software).

1http://cirg.cs.up.ac.za

Although CIlib and CiClops have initially been devel-
oped to serve the needs of CIRG@UP, a survey of recent
PSO papers [4] have revealed a number of problems which
motivated the group to develop systems that can be used by
the wider CI (specifically the swarm intelligence) research
community as effective collaborative tools. These problems
include:

• Duplication of effort: In the restricted context of a
research group, duplication of effort equates to lost
productivity. In general, the science is better served
if researchers can expend their efforts on developing
new algorithms instead of writing implementations
for software that already exists elsewhere. A collab-
orative code base can save researchers from reinvent-
ing the wheel.

• Failure to take latest developments into account: A
collaborative code base increases awareness of what
others are doing, in effect providing all participants
with a more generalised view even though they spe-
cialise on their own specific work.

• Insufficient testing on problems: The No Free Lunch
(NFL) theorem [5, 6] implies that algorithms should
be tested on many problems to determine which prob-
lems they are best suited for, since all algorithms are
on average equivalent when all possible problems are
considered. Thus, large amounts of empirical data
will need to be generated, which may have value if
shared, to draw conclusions about the relative merit
of different algorithms.

• Poor parameter choices: Good parameter choices
for algorithms can be communicated as default values
in a shared implementation platform. Also, a shared
repository of simulation results can make researchers
aware of the best results obtained for a given algo-
rithm by other researchers.

• Conflicting results: A collaborative platform will un-
dergo more stringent peer review, which will elimi-
nate the occurrence of conflicting results reported on
the same problem using the same algorithm. The code
within a shared resource is likely to be far more reli-
able than throw away research code.

• Invalid statistical inference: Shared statistical anal-
ysis tools, which provide decision support for the best
analysis method to use in a given context, can reduce
the risk of researchers making incorrect assumptions
about the applicability of statistical tests.

CIlib and CiClops have as objective to address these prob-
lems.

3. CILIB

CIlib, an open source library2 is a software framework de-
signed (and implemented in Java) to accommodate scien-
tific research in CI, providing implementations for many CI
algorithms, problems definitions, and a simulator for con-
ducting experiments. The simulator receives an XML file
which completely specifies the algorithm(s) to be executed,
the problem (or set of problems) to be solved, and the per-
formance criteria that need to be calculated. This section
provides an overview of CIlib, and provides examples to il-
lustrates its use. Section 3.1 summarises the goals of CIlib.
An overview of the framework is given in Section 3.2, while
example XML specifications are given in Section 3.3.

3.1. Goals

CIlib has the following high level goals:

• Flexibility: Design patterns are used to create a reusable
framework capable of supporting the complexity of
the CI field.

• Experimentation: The framework facilitates scien-
tific experimentation, making it possible to measure
any property of an algorithmic simulation.

• Efficiency: CI algorithms are usually computation-
ally expensive. The framework trades-off fast im-
plementations with clean object-oriented design (for
maximum modularity).

• Separability: A clean separation of algorithms and
problems is provided. Algorithms are also indepen-
dent of scientific simulation and measurement com-
ponents.

• Reliability: Clean object-oriented design and exten-
sive unit testing reduce the chance of errors in code.

• Collaboration: The framework shares a common open
source base, which allows other researchers to add to
easily add to the code base.

3.2. CIlib Framework

Algorithm and Problem are the two main interfaces of
the CIlib framework, used tp specify the algorithm to be ex-
ecuted and the optimisation problem to be solved. The logic
for how the algorithm optimises the problem and the manner
in which the problems are optimised are kept separate. The
Algorithm interface, summarised in Figure 2, provides
the needed operations for the execution of an algorithm. Al-
gorithms have the following properties: (1) they are running
or stopped, (2) they are initialised or uninitialised, and (3)

2http://cilib.sourceforge.net

Figure 2. Algorithm Interface

they have a collection of StoppingConditions. Stop-
ping conditions may assume a variety of forms, and CIlib
facilitates this diversity. It is therefore possible to specify
a range of terminal conditions, from maximum iterations
to maximum fitness evaluations or minimum function opti-
mization error or minimum swarm diameter.

Problems are categorised into OptimisationPro-
blems, as illustrated in Figure 3. Optimisation can ei-
ther be a maximisation or a minimisation. Note that the
interface allows for single-objective and multi-objective op-
timisation problems. Different problems are defined as sub-
classes of the interface Function. Each problem returns
a Fitness which can then be used by the implemented
algorithm.

Algorithms that solve optimisation problems follow the
OptimisationAlgorithm interface as illustrated in Fig-
ure 4, which illustrates implementation for a particle swarm
optimiser (PSO). Figure 5 summarises the specification of
PSO implementations.

As an empirical platform, CIlib must have a facility for
measurement of performance criteria, which is facilitated
via the Measurement class. Measurements are the re-
quired statistics that can be gathered from an algorithm.
These measurements are stored in a data base at specified
intervals. Examples of measurements include fitness, time,
swarm diameter, function optimization error measurement,
iterations, fitness evaluations, restarts and percentage com-
plete.

CIlib also provides for a very generic way of defining
the characteristics of the search space. This is done via
Type and Domain classes. Via these classes, it is pos-
sible to specify the domain as, e.g. R30 to indicate a 30-
dimensional continuous-valued search space.

Figure 3. Problem Interface

Figure 4. Optimisation Algorithm Interface

Figure 5. Particle Swarm Optimisation Interface

3.3. XML Specification Examples

CIlib provides a command line simulator for configuring
and executing experiments. The simulator is essentially a
XML object factory which allows for the specification of
algorithms, problems and measurements. The XML ob-
ject factory constructs, configures and composes the cor-
responding objects at run time according to an XML docu-
ment.

Figure 6 is an example configuration for the CIlib simu-
lator, using a standard PSO with a linear decreasing inertia
component to find the minimum of the spherical function on
its default domain of “R(-100,100)ˆ30”, given by:

f(x) =

30∑
i=1

x2
i , with xi ∈ {R | − 100 ≤ xi ≤ 100} (1)

while measuring the number of iterations and function op-
timisation error, by default every 100 iterations, and out-
putting the results to a file named “inertia.txt”. By default,
the simulator repeats the experiment 30 times, actually it
runs them in parallel threads, outputting all the results to the
same file, where they can be later analysed. The simulation
engine parses the XML document for a </simulator>
tag, specifying a single algorithm on a given problem, each
time measuring certain properties. Applicable tag names
are governed by the properties available in the source code
at run time. The set of permissible tags may be found in the
Java reflection API generated by Javadoc. Primitive typed
properties and strings are set by enclosing them in tags. For
example, in Figure 6

<minimumValue>0.25</minimumValue>
<maximumValue>1.0</maximumValue>

set minimumValue and minimumValue to 0.25 and 1.0 re-
spectively.

Figure 7, in turn, illustrates another slightly more com-
plex configuration file. This example demonstrates how
portions of the document can be reused by making use of
ID references. Typically, more descriptive identifiers than
“A”, “B”, “M” and “S” would be used, they were shorten
here purely for formatting reasons. Note that it is imma-
terial that multiple algorithms and simulations are speci-
fied within <algorithms/> and <simulations/> el-
ements. The simulator merely searches for simulation el-
ements and follows any identity links to their targets, irre-
spective of where they are defined in the document. Further,
the sample demonstrates two short hand ways to set proper-
ties. Primitive and string valued properties can be specified
directly as attributes in the parent element instead of nest-
ing them as separate elements. Alternatively, they can be
specified using the value attribute of their own property
tags instead of placing the value in the body of the element.
Properties in reused portions of the document can be over-
ridden where they are referenced. For example, the same
measurement suite configuration is used to output to two
different file names. In addition, the measurement suite has
two additional properties: i) the number of repetitions of the
experiment, or samples; and ii) the resolution, which speci-
fies how often results are written to file.

Figure 9 illustrates how an ant colony optimization algo-
rithm, the ant system in this case, can be specified to solve
the traveling salesman problem. The specification is based
on the ACO interface.

4. CICLOPS

The main motivation for CiClops, which is currently not
available as an open source project, is to provide a system
to schedule simulations on a computer cluster, to archive all
generated data, and to provide tools for the visualisation and
analysis of empirical data. One of the tools is to maintain
an up-to-date ranking of all algorithms in CIlib, based on
defined criteria. The main objectives of CiClops are:

• Scalability: An arbitrary number of simulations per
experiment is allowed, with simulations scheduled over
multiple workstations.

• Simulation repository: Complete simulation results
are stored for all algorithms and all problems. This
eliminates expensive re-computations for new research
studies. Simulation data keep track of dependencies
on code and data sets, so that if dependencies change,
results are automatically recalculated to ensure con-
sistency and correctness.

• Statistical analysis tools: The aim is to implement
and provide decision support for sound statistical hy-

<simulator>
<simulation>

<algorithm class="PSO.PSO">
<addStoppingCondition class="StoppingCondition.MaximumIterations"/>
<velocityUpdate class="PSO.StandardVelocityUpdate">
<inertiaComponent class="PSO.LinearDecreasingValue">

<minimumValue>0.25</minimumValue>
<maximumValue>1.0</maximumValue>

</inertiaComponent>
</velocityUpdate>

</algorithm>
<problem class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical"/>
</problem>
<measurements class="Simulator.MeasurementSuite">

<file>inertia.txt</file>
<addMeasurement class="Measurement.Iterations"/>
<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>
</simulation>

</simulator>

Figure 6. Simple PSO Specification

pothesis testing. Built-in tools will also be provided
for data visualization.

• Ease of use: An easy to use graphical user interface
is provided to specify simulations. The user interface
updates automatically based on changes in the CIlib
code base.

• Security: A granular permission system is provided
to keep data private if so desired, and to ensure data
integrity.

Using a graphical user interface, the researcher specifies
the algorithm(s) to execute, the problem(s) to solve and the
performance measures to be calculated.

The architectural overview of CiClops is given in Fig-
ure 10. There are three main components in CiClops:

• The CiClops code base: This is the heart of CiClops
and it is used in conducting the actual experiments.
This replaces the role of the command line simulator
(which receives the XML simulation specification).
CiClops periodically updates its version of CIlib from
the the latest version stored in the CVS repository at
SourceForge.

• A cluster of workstations: Each cluster node, or
worker, consists of a light weight stub which executes
tasks, taking the form of CIlib simulations, on behalf
of the CiClops server. Workers always execute simu-
lations using the latest available version of the CIlib

Figure 10. CiClops Architectural Overview

<simulator>
<algorithms>

<algorithm id="A" class="Algorithm.CoOperativeOptimisationAlgorithm">
<algorithmFactory class="XML.XMLAlgorithmFactory">
<algorithm idref="B"/>

</algorithmFactory>
<participants value="10"/>

</algorithm>
<algorithm id="B" class="PSO.PSO">

<topology class="PSO.VonNeumannTopology"/>
<addStoppingCondition class="StoppingCondition.MaximumIterations"/>

</algorithm>
</algorithms>
<problem id="S" class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical" domain="R(-50,50)ˆ100"/>
</problem>
<measurements id="M" class="Simulator.MeasurementSuite" samples="50">

<addMeasurement class="Measurement.FitnessEvaluations"/>
<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>
<simulations>

<simulation>
<algorithm idref="A"/>
<problem idref="S"/>
<measurements idref="M" file="data/cpso.txt"/>

</simulation>
<simulation>

<algorithm idref="B"/>
<problem idref="S"/>
<measurements idref="M" file="data/pso.txt"/>

</simulation>
</simulations>

</simulator>

Figure 7. More Complex PSO Specification

classes and any data sets by means of remote class
loading and efficient local caching of data sets.

• A central server and data store: The CiClops server
is implemented as a J2EE application and deployed
on the open source JBoss application server. The back-
end data store is a MySQL relational database, al-
though the J2EE persistence framework makes this
largely irrelevant to the application, affecting only the
deployment descriptor, which is generated automati-
cally using XDoclet. The server is responsible for
configuring experiments, scheduling tasks on the clus-
ter, archiving simulation results and performing sta-
tistical analysis on the results. The load balancing ser-
vices provided by the J2EE container means that Ci-
Clops can also be scaled up to multiple servers if and
when the load of many workers becomes too high for

one server to handle. Finally, some kind of user inter-
face is required to interact with the system. Presently,
this is provided in the form of a rich JFC/Swing based
GUI client, with a view to providing a web based
front end in the future. Fortunately, this should not
be difficult to accomplish, since all the CiClops ap-
plication logic is executed on the server, lying within
the application tier of the J2EE framework.

5. CONCLUSIONS

The paper introduced a flexible, peer reviewed collabora-
tive framework for CI empirical work. The benefits accru-
ing from the use of, and continual assimilation of new algo-
rithms into the framework, have been discussed. Although
reported usage of the framework is within CIRG@UP, it is

Figure 8. Ant Colony Optimisation Interface

hoped that the CI community will take advantage of, and
also contribute to the growth and maturity of CIlib. It is
also hoped that in the future the following may be closely
looked at:

• The role of open source in collaborative research:
Open source clearly has benefits for collaborative soft-
ware development. Its role should be studied further,
to identify and quantify critical success factors when
using open source as a means to facilitate collabo-
rative research, so that these factors may be applied
to other projects. If and when CIlib becomes suc-
cessful as a collaborative tool beyond the borders of
the CIRG@UP, it can be analysed as a case study to
achieve this goal.

• PSO Taxonomy and characterisation of optimisa-
tion problems: A solid foundation for performing
empirical studies is provided by the combination of
CIlib and CiClops. In this light, the original goal
of creating a PSO taxonomy and empirically testing
PSOs should be revisited. Further, a method of char-
acterizing optimisation problems should be investi-

gated to determine the type of problems for which a
particular optimisation algorithm is best suited.

• MathML for specifying benchmark functions:
Benchmark functions in CIlib are implemented us-
ing a separate class for each function, resulting in
a very large number of classes and no way to de-
fine new functions without resorting to writing code.
MathML, an XML grammar for defining mathemat-
ical expressions, should be investigated as an alter-
native. A primary concern will be the efficiency of
this approach, since benchmark functions are typi-
cally executed in tight loops. One possibility worth
investigating is compiling MathML function descrip-
tions directly into Java byte code at run time so that
they become the equivalent of classes.

• Mining simulation data: CiClops has the potential
to generate large volumes of simulation data. Data
mining techniques should be investigated to determine
trends in simulation data. In cases where the under-
lying data mining algorithms are based on CI tech-

<simulator>
<algorithms>
<algorithm id="astsp" class="ACO.ASTSP" numberAnts="6" tau="0.000001">

<prototypeAnt class="ACO.TSPAnt">
<transitionRuleFunction class="ACO.StandardTransitionRuleFunction"

alpha="1.0" beta="5.0"/>
<pheromoneUpdate class="ACO.Pheromone.StandardPheromoneUpdate"

rho="0.5" e="5.0" Q="100.0"/>
</prototypeAnt>
<addStoppingCondition class="StoppingCondition.MaximumIterations"

iterations="9"/>
</algorithm>

</algorithms>
<problems>
<problem id="TSP" class="ACO.TSPProblem">

<dataSet class="Simulator.LocalDataSet" file="data/pr107.tsp"/>
</problem>

</problems>
<measurements id="measurements" class="Simulator.MeasurementSuite"

samples="1" resolution="10">
<addMeasurement class="ACO.GraphMeasurementSolutionLength" />
<addMeasurement class="ACO.GraphMeasurementSolution" />

</measurements>
<simulations>
<simulation>

<algorithm idref="astsp" />
<problem idref="TSP" />
<measurements idref="measurements" file="data/results-aco-astsp.txt" />

</simulation>
</simulations>

</simulator>

Figure 9. Ant System Algorithm to Solve the Traveling Salesman Problem

niques, as many are, an interesting question of whether
CI techniques be applied recursively to make sense of
CI simulation results can be answered.

Readers who think consider to make use of CIlib, or
who want to contribute code, are invited to contact the sec-
ond author, AP Engelbrecht.

6. REFERENCES

[1] RC Eberhart, P Simpson, R Dobbins, Computational
Intelligence PC Tools, AP Professional, 1996.

[2] AP Engelbrecht, Computational Intelligence: An In-
troduction, Wiley& Sons, 2002.

[3] W Pedrycz, Computational Intelligence: An Intro-
duction, CRC Press, 1998.

[4] ES Peer, AP Engelbrecht, F van den Bergh,
CIRG@UP OptiBench: A Statistically Sound Frame-
work for Benchmarking Optimisation Algorithms,
Proceedings of the IEEE Congress on Evolutionary
Computation, pp 2386-2392, 2003, Canberra, Aus-
tralia.

[5] DH Wolpert, WG Macready, No Free Lunch The-
orems for Search, Technical Report SFI-TR-95-02-
010, Santa Fe Institute, July 1995.

[6] DH Wolpert, WG Macready, No Free Lunch Theo-
rems for Optimization, IEEE Transactions on Evolu-
tionary Computation, 4:67–82, 1997.

[7] H. Zimmermann, G Tselentis, M van Someren, G
Dounias, Advances in Computational Intelligence
and Learning: Methods and Applications, Kluwer
Academic Publishers, 2002.

	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	01: 130
	02: 131
	03: 132
	04: 133
	05: 134
	06: 135
	07: 136
	08: 137

