An Intelligent Universal Virtual Laboratory (UVL)

Michael Duarte
Electrical & Computer Eng. Department
Temple University
Philadelphia, PA 19122 USA

Brian P. Butz
Electrical & Computer Eng. Department
Temple University
Philadelphia, PA 19122 USA

Key Words: Assistive Technology, Interactive Software, Virtual Laboratory, Intelligent Tutor

Abstract — The objective of this project is to create a
realistic, real-time, electrical engineering virtual
laboratory. This project targets individuals who do
not have adequate mobility of their upper bodies to
perform laboratory experiments. To provide a more
realistic and enhanced learning experience, the users
of the virtual laboratory are allowed the freedom to
build and test a wide variety of realistic electrical
circuits, and be able to perform curriculum-based
experiments. The main goal is to create an
environment similar to a real electrical engineering
laboratory, and to offer the user a way to learn the
different aspects of instrumentation and circuitry.

1. INTRODUCTION

According to the Center for Disease Control [1], there
are 13.6 million individuals who have limited hand use
and another 16.3 million who have mobility limitations.
In the field of science and engineering, there are
approximately 109,700 persons with motor disabilities
employed in the United States {2]. Also, approximately
31,300 students with motor disabilities were registered in
science and engineering programs in 1995 [3]. This
project is intended to encourage and assist individuals
with such mobility disabilities to enter the field of
electrical and computer engineering. Presently, disabled
individuals with motor disabilities have a difficult time
with the laboratory portion of the curriculum. At most,
individuals with limited or no use of their arms and hands
could only watch their lab partners perform the laboratory
experiments. While better than nothing, this is not good
enough for a quality laboratory experience.

The purpose of the Universal Virtual Laboratory
(UVL) is to provide a disabled student with motor
disabilities a realistic laboratory experience that can be
done at the student’s pace while providing a good, solid,
curriculum-based background in circuit experimentation,
as well as a virtual lab assistant to guide and assist the
student.

Recent advancements in computer technology and
availability have allowed the computer industry to
develop hardware and software applications that address

0-7803-7339-1/02/$17.00 ©2002 IEEE

75

the needs of the physically disabled. Circuit simulation
software has existed for some time, with the very first
simulators being DOS text based programs such as
PSpice. With the introduction of operating systems with
graphical user interfaces (GUI), better laboratory
simulation software became available, such as Electronics
Workbench. ~ However, these programs contain an
interface that is difficult for the physically disabled to use,
such as small buttons and an unfriendly breadboard. In
addition, because the instruments and components do not
look realistic, it can feel like a simulation instead of a

laboratory.
This project attempts to provide the user with a familiar
and realistic environment, using several existing

Windows® applications. The main goal is to create an
environment similar to a real electrical engineering
laboratory, and to offer the user a way to learn the
different aspects of instrumentation and circuitry.
Furthermore, the laboratory can be run from either 2 CD-
ROM or from a website for distance learning engineering
courses.

II. IMPLEMENTATION

This section describes the factors considered in the
development of the UVL. The User Interface section
describes the user interface and why it is designed the
way it is. Section B, the System Architecture, gives an
overall view of the components that result in the present
UVL. Specifics of the system architecture are discussed
in section C, The Design Process. The mechanism
facilitating communication among the UVL’s application
programs is described in section D. Finally, section E
gives an overview of the intelligent laboratory assistant.

A. User Interface

The main goal in the design of the user-interface is to
present the user with a realistic environment as well as an
environment that a disabled user can manipulate without
difficulty. To do this, the laboratory will be designed to
allow any type of assistive technology to work with the
environment. Assistive technology allows disabled
individuals the ability to manipulate a computer. Some of

the devices that will be focused on are: eye gaze
detectors; head mounted pointing devices and voice
recognition software. To date the UVL has only been
developed to facilitate the use of voice recognition
software as well as traditional mouse and keyboard
manipulation. Hence, the remainder of this paper will
focus only on the aspects of the laboratory that were
designed for voice recognition.

To make the user interface friendly to voice recognition
manipulation, a particular scheme of design was followed
so that simple voice commands would perform major
laboratory functions.

The user-interface consists of a breadboard with
miniature instruments, with a variety of electrical
components (see Fig. 1). To date, the components
available are: resistors, capacitors, inductors, diodes,
zener diodes, potentiometers, variable capacitors,
transistors, and jumper wires. At this workstation, the
user has the freedom to build any type of circuit
configuration possible. Typically, the student is given an
experiment to complete. The instruments available to the
user are a DC power-supply, a function generator,
oscilloscope, spectrum analyzer, and a digital multimeter.

The instruments are connected to the holes on the
breadboard when the user selects the instrument of his/her
choice and via-voice enters the coordinate of the hole the
user wishes to place a cable. The components connect to
the breadboard in a similar way. The coordinates are the
letters and numbers seen on the breadboard (see Fig. 2).
The user enters the letter and number corresponding to the
hole on the breadboard where he/she wishes to place a
wire, cable or component. An example of the interaction
might be: “Move mouse right”, “Click”, “C, 2, 2000”.
This would move the cursor to the right over a particular
component, and place it on coordinate “C 2” with a value
of 2000 ohms for a resistor.

The Lab Assigtant ‘

Experiment 1: introduction to the Virtuat Laboratory

Fig. 1: User Workspace with circuit

Fig. 2: Coordinate View of the User Workspace

Each instrument in the workstation has a corresponding
larger version that is used to change the parameters of that
instrument. With the two input instruments (DC power-
supply and function generator), the user can change the
settings and control the type of signal being put through
the circuit. The output instruments (multimeter and
oscilloscope) can be used to measure the voltage and
current of particular parts of the circuit.” The user can
manipulate the settings on these instruments to view the
signal similiar to actual instruments. Fig. 3 shows the
larger version of the function generator and the
oscilloscope respectively. .

The specific instruments that were modeled are fully
adjustable to a range of values found on the equipment in
an ordinary electrical engineering laboratory. The digital
multimeter is able to measure the current and voltage of a
DC circuit as well as measure the RMS value of the
current and voltage of an AC circuit. The two-channel
oscilloscope is able to display a current or voltage signal
of both a DC and AC circuit. The oscilloscope also has
the proper buttons and knobs that control the x-y
displacement and the x-y ranges.

The function generator and the DC power supply can
be used as inputs to the circuit. The function generator
supplies a sinusoid or square wave signal, and has an
adjustable amplitude and frequency setting. As for the
DC power-supply, it supplies either a positive or a
negative voltage to the circuit.

Finally, the spectrum analyzer in actuality has two
main functions. It serves as both a frequency sweep
generator and spectrum analyzer. The user can use the
frequency sweep generator portion of the instrument to
apply a frequency sweep to a circuit and measure the
output of the circuit with the analyzer portion.

As can be seen from Fig. 3, the buttons, knobs and
displays have a large area. This was done so that the
disabled user could more adequately manipulate the
instruments. If the user is inclined to use the cursor with
the voice recognition software, he or she can more readily
navigate the cursor over the large buttons and displays.

76

Fig. 3: Function Generator and Oscilloscope

B. The System Architecture

Fig. 4 shows the system architecture of the UVL. The
user, via the voice interface Dragon Dictate, interacts
with a packaged Authorware executable. Dragon Dictate
is an off the shelf software package that allows users to
manipulate the Windows environment, via voice
recognition. In addition, the user controls the instruments
that are packaged as separate executables similar to the
Authorware package. The user cannot change or
manipulate the code developed in Authorware or
LabView. Instead, these packaged versions only run in
the Windows environment, and allow the user to control
only what is displayed to them. PSpice, which is used to
calculate all the necessary information of the circuit the
user builds, runs autonomously and hidden from the user.
At no point does the user interact with PSpice in any way.

The Intelligent laboratory tutor is a C++ natural
language interface, developed specifically for this project.
It accepts questions or a comment posed by the user and
determines what information the user is requesting. This
C++ executable runs hidden from the user and seems, to
the user, as a natural part of the user workspace. Further
discussion of the intelligent tutor will be discussed in
section E.

Fig. 4: UVL System Architecture

77

C. The Design Process

In the process of designing the UVL, the major issue
encountered was: what software applications can be used
that will make the system run and perform like a real
laboratory. The laboratory had to give the user a way to
produce a virtual layout of a circuit configuration. Once
this layout was completed, it had to be analyzed to extract
certain information about the circuit. Finally, this
information had to be displayed on instruments that look
and function like real instruments found in a real
laboratory.

Macromedia’s Authorware was chosen to give the user
a way to layout a circuit or build a circuit on a
breadboard. Authorware is an interactive multimedia
development package that has been use as an authoring
tool for computer-based training, because it makes it easy
to handle a wide variety of media and precisely track and

~ respond to users’ actions. It can display images and text,

as well as track and store user movements, and has the
ability to communicate with other packages. Since users
of the UVL needed the ability to move components, and
create a circuit that seemed real, a package that could
make interaction simple, and at the same time record the
interactions was an important aspect for this project.

Authorware is designed so that a developer can easily
add graphics and movablilty to a screen. Innate to
Authorware is the user tracking mechanism. This
mechanism is the most important key to the UVL,
because of the need to “know” what the user is moving,
connecting, or changing on the screen.

If a user builds a circuit, Authorware can record the
interactions and with a programmed algorithm, develop a
description of the circuit. For example, if an image of a
resistor is on the screen, the user could move the resistor
to a particular part of another image, say the breadboard.
Once the user has moved the image of the resistor to
his/her desired spot, Authorware can store a numeric
location of this image. This numeric location can then be
used later to perform an analysis of the circuit.

Although Authorware can be programmed to do many
different calculations and even execute C-based code, it
cannot easily analyze a circuit. This brought up the issue
of how could a circuit built or laid out in Authorware be
analyzed to extract the appropriate information the user
needs to see. PSpice, which is a circuit analysis tool, was
an obvious choice in this case.

PSpice is a popular circuit analysis program used by
many electrical engineers as a tool to analyze and test
circuitry [5]. To use PSpice to analyze a circuit, one has
to generate a text version of the circuit in a text file. This
“text circuit” is called a “netlist,” which is essentially a
component-by-component “text” diagram of the circuit

.written in a specific format for PSpice. Take Fig. 5 as an
example. In the figure is a simple circuit diagram and to
the right of the diagram is the PSpice netlist version of the
circuit. As can be seen, each component is labeled and
has a numbered location on the diagram with its
appropriate value. PSpice uses this information to
analyze the circuit. Line 3 in the netlist file corresponds
to rl on the diagram. The netlist needs the name of the
component, in this case rl, and then needs the location of
the component (1 to 2), and finally the value of the
component (1000chms). These numbers or locations of
the component are called nodes. In between any
component in any given closed circuit are two nodes.
These numbered nodes are what give PSpice the ability to

. calculate the circuit.

The last four lines of the netlist tell PSpice what
analysis to perform on the circuit and what to display as
the output. For this case, the input to the circuit is a
battery, so PSpice will need to do a DC analysis on the
circuit. The lines that contain V(1,2) and i(r1), tell PSpice
to calculate and display the voltage across and the current
through rl respectively. This information is then stored in
another text file. Knowing that PSpice needs this netlist
file, Authorware had to generate a text file with the netlist
of the circuit built by the user. Using Authorware's
ability to track movements of images by the users, a
translation of where the user puts an image of a
component to a node location was plausible. Therefore,
with PSpice’s ability to analyze the circuit and store the
analyzed data in another text file, there had to be a way to
display this information.

National Instruments’ LabView is a well-known
package that is used in industry for instrumentation
analysis [4]. This program seemed ideal, because of its
ability to be customized through its native G-code
(graphical code) language. Within LabView are dials,
buttons, switches and the ability to process mathematical
data easily. Knowing that LabView could look and
perform like real instruments, it seemed like even more of
an ideal choice for the virtual laboratory. These
instruments created in LabView needed the ability to
process information coming out of the PSpice output file.
LabView can easily send information to other programs
and analyze data from actual real instruments or from
other programs. Essentially, the output from PSpice
would be used as a data stream continuously sent to
LabView. This stream would then have to be parsed for
the appropriate information using a search algorithm.

78

Cireuit 1

vdc 10 5.00Volts
r1 12 1000ckas
£12010af

de vdc 5.00 5.00 1
print de V(1,2)
print de i(r1)

end

S 10pF

]

Fig. 5: Circuit diagram with PSpice netlist file

With these three application packages, it was concluded
that text files were an easy and quite efficient way to have
them communicate with each other. Since the computers
of today have extremely fast processing times, text files
were tested to be more than adequate for the
communications link. The time it took to open, write, and
close a file of a simple circuit was miniscule when tested.

D. The Communications Channel

The architecture discussed above needed to work
quickly and efficiently, without the user seeing what is
happening in order for the UVL to seem like it is
functioning in real-time. Through extensive testing of
Authorware, LabView, and PSpice’s input and output
capabilities, it was concluded that using text files is a fast,
efficient, and reliable method to create a constant
communications channel (see Fig, 6).

This communications channel allows the virtual
instruments to update in real-time (although slower than
in a real laboratory). The input instruments (function
generator, DC power supply, and sweep generator) send
Authorware the settings the user has set, through a text
file. Authorware then takes these settings along with the
netlist it has created from the virtual breadboard and
sends it to PSpice. PSpice then creates an output file with
all the mathematical information of the circuit and sends
it to the output instruments (oscilloscope, multimeter, and
spectrum analyzer) for display. The creation and
exchanging of files, as well as the PSpice calculation, is
completely hidden from the user (see Fig. 6). Itrunsina
hidden DOS window within the Windows operating
system.

Output !

Instrument Instrument

o

Fig. 6: The UVL Communications Channel

E. The Intelligent Tutor/Laboratory Assistant

Fig. 7 shows the intelligent tutor’s architecture. When
the user of the laboratory wishes to post a question or
comment to the intelligent tutor, he/she calls the tutor by
either clicking the tutor icon or by saying “t”. Once the
tutor is activated, it asks the student to “point” to where
he/she is having problems. At this point, the user either
clicks or selects the component or instrument giving them
problems and types or voices their question or comment.
This question, along with the name and value of the
component or instrument the user selected, is written to
another text file. The C++ executable containing the
intelligent tutor then loads this file and makes the
necessary assessment of what the user wants to know. An
example could be: “How do I measure the voltage across
it?” The information passed to the tutor would be the
question and perhaps “R1, 2000 ohms”, if the user clicked
onR1.

With this information, the tutor parses the sentence and
identifies key words that are used in making the proper
decision on what information the user wishes to know.
The key words above are: “measure”, “voltage”, and
“resistor”. These words are used to search the tutor’s
knowledge base and make a decision on what the user
should see; which could be a simple tutorial on how to
connect the digital multimeter across a resistor to measure
its voltage.

Preliminary testing of the intelligent tutor has shown
this method can work efficiently and quickly. On going
testing and modifications are now under way. Testing
consists of having students within the Department of
Computer and Electrical Engineering at Temple
University sit down with the UVL and perform
experiments from the department’s curriculum. This
testing encompasses both the usability of the software as
well as the accuracy of the intelligent tutor’s
understanding of the questions posed, as well as the
accuracy of the virtual laboratory environment compared
to a real laboratory.

III. CONCLUSION

The Universal Virtual Laboratory has so far been
accurate, reliable, and easy to use. It gives the user
enough freedom to create a feeling of a real laboratory
environment. Consequently, this program has the
potential to be beneficial and educational for a disabled
student who is in the electrical engineering field. In
addition, the UVL could be widely distributed and used in
a wide variety of other educational environments. It
could reduce the cost of equipment and perhaps even

79

reduce the time spent in a structured laboratory
curriculum.

On-going testing and modifications are being
performed on the intelligent tutor part of the virtual
laboratory. Although preliminary tests have shown that
the intelligent tutor is functioning adequately, future work
will be required to make it as accurate as a real laboratory
assistant.

To date only traditional mouse and keyboard as well as
voice recognition have been used to test the UVL.
Additional testing using other input devices will also
encompass future endeavors into the laboratories
development. Development of algorithms to assist in the
use of eye detectors, switches, joysticks, and headset
pointers is anticipated.

The Universal Virtual Laboratory was developed on a
Pentium® III 750 MHz computer with 128 Mbytes of
memory. Due to the iterative nature of the calculations,
the UVL performs only moderately on a 200 MHz
computer with 16 Mbytes of memory. When tested on a
400 MHz Pentium II® with 32 Mbytes of memory, the
UVL performed flawlessly. Therefore, it is recommend
that the UVL be used on a computer faster than 200 MHz
with at least 32 Mbytes of RAM. One aspect that takes a
considerable amount of processor time is displaying the
iterative calculations from the PSpice output file on the
oscilloscope or spectrum analyzer. Using Labview's
graphical programming language, the data is “stripped”
from the PSpice output text files and then loaded into
arrays within LabView. Code optimization within the
LabView instruments could help the performance of the
laboratory and is currently being investigated. For more
information, please visit http://www.temple.edw/IMITS.

9—-} Authorware

P intelligent Tutor

Working
Memory

Natural
Language
Interface

Inference
Engine

Knowledge
Base

Fig. 7. The UVL Intelligent Tutor Architecture

IV. ACKNOWLEDGMENT

Partial support for this work was provided by the
National Science Foundation’s Division of Undergraduate
Education through grant DUE #9952291 and Human
Resource Development through grant HRD-0004292.

V. REFERENCES

[1] Center For Disease Control (1995). National Health
Interview Survey, 1994.

[2] National Science Foundation (1997), Award Abstract
#9710548, SBIR Phase II: Computer Simulation of
Science and Technical Laboratory Exercises for
Physically-Disabled Students,

Http://www fastlane.nsf.gov/servlet/showaward?awar
d=9710548.

[3] National Center for Education Statistics. The 1996
National Postsecondary Student Aid Study data
system, 1996.

[4] Wells, Lisa, and Jeffrey Travis. LabView: for
Everyone. Upper Saddle River: Prentice, 1997. 6.

[5] Monssen, Franz. MicroSim Pspice with Circuit
Analysis. Upper Saddle River: Prentice Hall, 1996.
1-2.

80

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

