
A Virtual Laboratory for Digital Signal Processing

Chyi-Ren Dow, Fu-Wei Hsu, Tsung-Kai Yang and Jin-Yu Bai

Department of Information Engineering and Computer Science

Feng Chia University, Taichung, Taiwan

crdow@fcu.edu.tw, {sam, toycat, ohright}@pluto.iecs.fcu.edu.tw

Abstract
This work designs and implements a virtual digital

signal processing laboratory, VDSPL. VDSPL consists of
four parts: mobile ageni execuiion environments, mobile
agents, DSP development sofrware and DSP experimental
plarforms. The network capability of VDSPL is created by
using mobile ageni and wrapper techniques without
modrfying the source code of the original programs.
VDSPL provides human-human and human-compuier
inieraction for students and teachers, and i f can also
lighten the loading of teachers, increase the learning
resuh of students, and improve the usage of network
bandwidih. A prototype of VDSPL has been implemented
by using ihe IBM Aglet sysiem and Java Native Inierfce
for DSP experimental plarfom.

Keywords: Digital signal processing, virtual laboraiory.
e-learning, mobile agent, wrappeK

1. Introduction

Digital signal processing @SP) [9, 171 is one of the
most powerful technologies in the twenty-fmt century
and is a growing subject area in Electrical, Computer
Science and other EngineeringlScience disciplines. DSP
is closely linked to our life and is widely applied in many
fields such as: telecommunications, robotics, consumer
electronics, medicine, military, instrumentation,
aerospace industry, and automobile. Each of these areas
has developed a deep DSP technology, with its own
algorithms, mathematics, and specialized techniques.

Although DSP is the trend of future technology
development, the learning of DSP is not an easy task for
novices. Not only the DSP hardware architecture, but also
the flexible and powerful iostluction sets of DSP chips
are difficult for students. Thus, fast and convenient CAI
tools for the DSP learning are necessary. Currently, most
DSP learning tools are standalone. This kind of learning
approach has only human-computer interaction and lacks
of buman-human interaction [4, 61 such as teacher to
student and student to student. In order to add
human-human interactions, it is necessary to create
network capability for DSP-leaming tools. A network

enabled DSP learning environment can support multiple
users and allow them to interact with each other to
increase their interests in learning DSP in any place and
at any time via the Intemet.

In addition to the network capability, a DSP virtual
laboratory should support the features of multimedia and
multi-level. Through multimedia demonstrations,
students can easily understand various DSP theories. We
can use the multimedia technology to enhance an
experimental environment for students. Furthermore, a
DSP come material should be organized in multiple
levels so students can select DSP studying materials
according to their ability to reduce the frustrations when
leaming and deepen their impressions about DSP.

This work designs, develops and implements a
Virtual DSP Laboratory, VDSPL using mobile agent and
wrapper techniques. The autonomous feature of mobile
agents can be used in the virtual laboratory to substitute
for a teacher's behaviors and actions in a practical
laboratory. Mobile agents could guide several groups of
students in different places simultaneously. When a
student needs to interact with the teacher, the virtual
laboratory can dispatch a mobile agent to perform this
function. For a student, the mobile agent can play a
leaming guide and arrange the learning activities, to
improve the learning efficiency in a virtual laboratory.

The rest of this paper is organized as follows. First
of all, in Section 2 we discuss the background materials
and related work. Section 3 describes the system
architecture of our work. The system implementation and
prototype are presented in Sections 4 and 5, respectively.
Conclusions are made in Section 6.

2. Related Work

Tbere are many research areas relatcd to OUT work,
including virtual laboratory, digital signal processing,
mobile agent techniques and wrapper concept. These
topics are described in this section.

Distance education can be done in a wide variety of
styles via different learning models. The virtual
laboratory is one of the important components for macro
university architecture [I , 41. Students are required to
leam some courses through online experiments and

0-7803-7724-9103rS17.M) 0 2003 IEEE 166

simulations, and the virtual laboratory is provided for the
students to conduct course related experiments and
simulations via networks. Based on the equipment and
user access in each experiment, laboratories can be
classified into four types 141. The first type of laboratory
is the practical lab. This is a traditional laboratory. The
second type of laboratory is the remote lab. This kind of
laboratory uses physical experimental equipment and
allows users to remotely access the equipment and
instruments. The thud type is the micro lab which
provides some virtual equipment and allows only local
access. Traditional computer-assisted instruction (CAI)
tools belong to this type. The fourth type is the macro lab
which consists of one or more micro labs and allows
remote access through the Intemet. Some web-based
leaming environments belong to this type. The virtual
laboratory proposed in this work is a hybrid of the remote
lab and the macro lab.

The theorems of DSP use the mathematics and the
algorithms to manipulate the signals [7, 141 (ex. seismic
vibrations, visual images, sound waves) after they have
been converted into a digital form. Currently, there are
some DSP electronics manufactures (such as TI,
Motorola, NEC, and Analog Device) to develop their own
series of DSP chips. For instances, TI developed a series
of high performance DSP chip called TMS320m DSPs.
In the past few years, it is a challenge for student to learn
the DSP concepts, theorems and algorithms without any
auxiliary simulating/emulating tools in a lecture class.
With the rapid technological changing, there are several
powerful simulation software tools (e.g., MATALAB,
MATHCAD [2, 151) for student to learn DSP. Through
this learning method, students cannot practice DSP
experiments with DSP hardwares; they can only simulate
digital signal processing by the simulation tools.

The mobile agent [3,5,8, 10-11, 131 is an emerging
technology that can be applied in many fields, including
electronic commerce, p e r ~ o ~ l assistance, secure
brokering, distributed i n f o d o n retrieval,
telecommunication networks services, workflow
applications and groupware, monitoring and notification,
information dissemination and parallel processing, etc. [4,
81. The use of mobile agents can bring several advantages
[8, 1 I], including the reduction of the network MIC and
latency in clientherver network computing paradigm,
protocol encapsulation, dynamic adaptation,
heterogeneity, robust and fault tolerance. In the past few
years, there are several contemporary mobile agent
systems [8, 12, 161 developed, and two main categories
of mobile agent systems can be identified systems based
on the lava language (e.g. Mole [IO], Aglets [8, 161,
Odyssey, Concordia, and Voyager. [IO]) and systems
based on scripting languages (e.g. Agent Tcl [IO], Ara
Tcl-based Am, and TACOMA).

One important problem we face when building a
virtual laboratory is where to place an extra function for a
stand-alone learning tool without knowing its source code
To be included in a vimal laboratory and used via

networks, these stand-alone leaming tools have to be
modified. In our approach, we use the wrapper concept to
implement our virtual laboratory. Wrapper [4, 131 is a
technique that provides a convenient way to expand upon
existing functions of an application program, without
modifying its source code. Wrappers intercept function
calls, method invocations, and messages to the
application software that they wrap, redirecting or doing
pre- andlor post-processing of inputJoutput. Wrappers
provide a way to compose applications from different
parts. The fact that a mobile agent is wrapped should be
transparent to other mobile agents in the system, and
potentially to the agent itself.

3. System Architecture

The system architecture of our virtual laboratory and
the functions of each component of the system are
described in this section.

3.1. System Overview
In our proposed framework, we use the mobile

agent techniques to construct the VDSPL. Figure 1 shows
the system architecture of VDSPL. There are four major
components in our virtual laboratory. These components
are the mobile agent execution environments, mobile
agents, DSP development software and DSP experimental
platfom. Various mobile agents are designed to assist a
teacher, The mobile agents in the teacher side can be
dispatched to the student si& to represent the actual
teacher and interact directly with the students. The
development tools are standalone programs on the teacher
and student sides. Furthermore, some middlewares are
designed and wrapped into our agents to provide
interactive functions and rules for mobile agents and the
development tool.

.-------I------------------------------.,
DSP So$%" Envimmcnt i :

I
i

!

I

!
__.__"L_i._l_ll"_._l_._"___.i_"~~-.~__~".
Qrs" tiyat%m

:

Figure 1, System Architecture

167

3.2. Mobile Agent Execution Environment
A mobile agent requires an execution environment

called the mobile agent execution environment (MAEE)
[SI. This environment must be installed on the student
and teacher sides to provide a necessary runtime
environment for agents to execute. The environment’s
basic facilities include mobility, communications, naming
and location, and security. All mobile agents are received
and executed in the environment and we also regard it as
an entry point or operating system for mobile agents.
Furthermore, four important roles exist in MAEE,
including the engine, resources, location and principal.
The engine serves as a workhorse or virtual machine for
MAEE and .mobile agents. The resources include
networks, datahase, processors, memory and other
hardware, and software services. The location can be
typically Written as an Internet Protocol (IP) address and
a port of the engine with a MAEE name attribute.
Principals l i e agents that have the responsibility for the
operation of MAEE. The MAEE is implemented by using
the Java language. Therefore, MAEE is a java application
that runs on the Java virtual machine (JVM) and has the
following good properties: platform independence, secure
execution, dynamic class loading, multithread
propmming, object serialization and reflection.

33. Mobile Agent
The mobile agent is a principal role in the virtual

laboratory. Different mobile agents such as the guide
agent, demo agent, learning agent, monitor agent,
homework agent and assessment agent can be designed
for our learning environment. A teacher can use various
mobile agents to assist students to learn. A guide agent
can be used to provide an interactive interface between
the teacher and the student. On the teacher side, the guide
agent provides various assisting functions for the teacher.
On the student side, the learning agent has some
predefined FAQ rules and it will reply appropriate
answers kom a knowledge base when the students ask
some common questions or the um’s behavior matches
certain rules. The monitoring agent could act as the
teacher to monitor the student’s actions and’ learning
status. The homework agent could act as the teacher to
dispatch homework to the student and record the
student’s homework execution status. The assessment
agent could give an assessment to check the student’s
learning results and provide different levels of assessment
materials. The demo agent helps the teacher to
demonstrate the steps of the experiment and let the
student have an overview of the experiment.

3.4. DSP Experimental Environment
The DSP experimental environment contains two

parts: hardware environment and software environment.
In the DSP software environment part, the software is the
DSP program development software which is an existing
application software without network capability and
provides a powerful integrated environment and have

several necessary analysis tools to develop DSP programs.
The software makes it easier and faster to implement DSP
programs using C as opposed to the assembly language.
The software also includes the debugging and real-time
analysis capabilities. Currently, there are many DSP
software environments such as Code Composer, Matlab,
Altera, etc.

In the hardware part, the DSP experiment platform
adopts the digital signal processor from the DSP chip
manufacturer. The hardware platform consists of a DSP
emulator and debuggers. They can suppott the user in
debugging the DSP program code through a standard
parallel port or PCI slot. Through the integration of the
software and hardware environments, we can develop,
debug, modify and execute our DSP programs.

4. Implementation

This section describes our system implementation.
The mobile agent and learning platforms are presented
first. Expanding the network capability for the virtual
laboratory system is described next. Then, agent models
and on-line learning implementation are presented.

4.1. Platform
Our virtual laboratory system consists of two

platforms. The first is the mobile agent platform and the
second is the DSP experimental platform. These two
platforms are installed on the teacher and student sides.
The mobile agent platform is Aglets, which was
developed by the IBM Research Laboratory in Japan. The
Aglets Software Developer Kit (ASDK) requires the JDK
1.1 or higher to be installed and is the fust Internet agent
systems based on the Java classes. The ASDK provides a
modular structure and an easy-to-use API for the
programming of Aglets. The Aglets are Java objects and
can travel from computer to computer via networks. The
migration of Aglets is based on a proprietary Agent
Transfer Protocol (ATP). An aglet that executes on a host
can suddenly halt execution, be dispatch to a remote host,
and resume execution. When the Aglet moves, it takes
along its program code as well as the states of all of the
objects that it is carrying. The security mechanism of
Java virtual machine and Aglet makes a host safe when
receiving the Aglets data.

The DSP experimental platform is composed of
TI’S integrated development tool CCStudio, Dmatek
PRO-OPEN TMS320C542 DSP Controller and
PICE-DSP ICE 320C542 [18]. CCStudio software is a
fully integrated development environment and supports
TI’S leading DSP platforms. It integrates all host and
target tools in a unified environment, including TI’S
DSPiBIOSm kernel, code-generation tools, debugger,
and Real-Time Data Exchange (RTDX) technology to
simplify DSP system configuration and application
design. CCStudio also has an open architecture that
allows TI and third parties to extend the IDES
functionality by seamlessly plugging-in additional

168

specialized tools. Through the CCStudio, the students can
learn DSP from multimedia presentation of real-world
signals and system theory. Dmatek DSP Controller is an
experimental board based on TI’S TMS320C542 DSP
chip and design for users to realize the function of DSP
chip and its peripheral device. PICE-DSP ICE 320C542
is in-circuit emulator for DSPs.

4.2. Network Capability
The network-enabled VDSPL capability is

implemented by using Aglet design pattems and the
wrapper concept. Design patterns are reusable
components and have been proven to be very useful in
the object-oriented field to achieve good application
designs. The wrapper concept is used to expand new
capabilities for an existing tool without modifylng the
original source code. The implementation of wrapper
concept uses Aglet design panem and the Java native
interface (JNI). The Aglets design pattems include
traveling patterns, task patterns and interaction patterns.
We add the network capability for the virtual laboratory
by inheriting the traveling patterns. These patterns can
deal with various aspects of managing the movements of
mobile agents, such as routing and quality of service and
they also allow us to enforce encapsulation of mobility
management that enhances reuse and simplifies aglet
design. Furthermore, the traveling patterns include three
traveling models, including Itinerary pattern, Forwarding
pattern and Ticket pattern. In our approach, we use the
Itinerary pattern and Forwarding pattern.

4.3. Agent Models
In order to remotely conbol VDSPL, we use the

JNI to connect the Win32 API in the initializeIterface.
The Java native interface and Visual C+t are used to bind
the Win32 API such as the “jni2c.dll” dynamic link
library (DLL). An interface is initialized between other
mobile agents and VDSPL for the wrapper agent.
Moreover, the wrapper agent can execute a doCommand
function that can be called by other mobile agents to
control and monitor VDSPL. The wnpper agent can also
respond to the results based on a wrapper script. Figure 2
shows the trigger of Windows API using JNI.

In our system, there are six mobile agents
implemented, including guide agent, monitor agent, demo
agent, assessment agent, homework agent, and learning
agent. These agents are designed for the platform on the
teacher side and the shldent side, and each mobile agent
has different ability. The guide agent, assessment agent,
demo agent, homework agent work in the foreground.
Above agents have user interface to allow the user to
interact directly with the system. Other agents without the
awareness of their existence by the user work in the
background.

There are three basic pattems for an agent, the
Aglet class object, wrapper class object and guide class
object. The Aglet class allows the mobile agent to execute
in the Aglet agent execution environment. This object
class provides VDSPL the network capability. The
wrapper class object provides mobile agent a way to
interact with the wrapper agent. The guide class allows
agents to communicate and interact with the user. This
class provides function calls for the wrapper script. Each
type of mobile agent uses different teaching and learning
knowledge-based rules. If the predicate of each rule is
satisfied, the mobile agent will take predefined actions.

5. System Prototype

A prototype of VDSPL is presented in this section.
As shown in Figure 3, when the mobile agent platform
starts running, it will first initiate an experimental
platform and provide an agent list for the teacher. If the
teacher needs an agent service or wants to communicate
with students, the guide agent can be used to do so. After
the guide agent clones a learning agent for students, the
learning agent will carry the learning materials which are
determined by the teacher. When the learning agent stark,
the students will receive a message informing them and
the learning program will start and then load the DSP
learning materials.

Figure 4 is a snapshot of the prototype when the
demo agent starts, and the demonstration example will be
presented step by step according to the demo script. In
VDSPL, we have also created a web site
(http://pluto.iecs.fcu.edu.tw/-dsphdex.h!m)that provides
news, DSP introduction, and DSP material zone, on-line
learning, download, discussion board, and related links.

Figure 2. Trigger of Windows API using JNI Figure 3. Guide Agent

169

http://pluto.iecs.fcu.edu.tw/-dsphdex.h!m)that

Figure 4. A Snapshot of the System

6. Conclusions

In this paper we present the VDSPL, a mobile
agent-based virtual digital signal processing laboratory.
Our system incorporates mobile agent techniques with
DSP development tool to provide teachers and students
with various instructions and interactions. The mobile
agent and wrapper techniques are used to enable the
network capability of standalone DSP development tools
and improve the teacher-student interaction for distance
DSP learning. Furthermore, the students can get guidance
and learn in the personalized environment through mobile
agents. In addition, the mobile agent and design patterns
are also used to perform software re-engineering and
provide a virtual laboratory.

Reference

S . K. Chang, T. Amdt, S. Levialdi, A. C. Liu, I. Ma,
T. Shih, and G Tortora, “Macro University A
Framework for a Federation of Wrtual
Universities,” International Journal of Computer
Processing of Oriental Languages, Vol. 13, No. 3,
pp. 205-221, September 2000.
A. Causen, A. Spanias, A. Xavier, and M. Tampi,
“A Java Signal Analysis Tool for Signal Processing
Experiments,” Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and
Signal Processing, Vol. 3, pp. 1849-1852, 1998.
A. I. Concepcion, J. Rum and R. R. Samson,
“SPIDER A Multi-Agent Architecture for Internet
Distributed Computing System,” Proceedings of
the ISCA 15” Intemational Conference on Parallel
and Distributed Computing Systems, pp. 147-152,
September 2002.
C. R. Dow, C. Y. Lin, C. C. Shen, J. H. Lin, and S.
C. Chen, “A Wrtual Laboratory for Macro
Universities Using Mobile Agent Techniques,” The
International Journal of Computer Processing of
Oriental Languages,Vol. 15, No. l,pp.l-IX, 2002.
C. R Dow, C. Y La and F. W. Hsu, “A Mobile

170

Agent-based Virtual Language Learning
Laboratory,” Proceedings of the International
Conference on Chinese Language Computing, pp.
98-103, Taichung, Taiwan, July 2002.
A. K. Dey, “Enabling the Use of Context in
Interactive Applications,” Proceedings of the 2000
Conference on Human Factors in Computing
Systems, pp. 79-80, April 2000.
W. S. Gan, Y. K. Chong, W. G. and W. T. Tan,
“Rapid Prototyping System for Teaching
Real-Time Digital Signal Processing,” IEEE
Transactions on Education, Vol. 43, No.1, pp.
19-24, February 2000.
D. B. Lange and M. Oshima, “Programming and
Deploying Java Mobile Agents with Aglets,”
Addison-Wesley, Reading, MA, 1998.
S. H. Mousavinezhad and 1. M. Abdel-Qader,
“Digital Signal Processing in Theory and
Practice,” Proceedings of the 31‘‘ ASEE/IEEE
Frontiers in Education Conference, October 2001.
V. A. Pham and A. Karmouch, “Mobile Software
Agents: an Overview,” IEEE Communications
Magazine, Vol. 36, No. 7, pp.26-37, July 1998.
A. Silva and M. M. da Silva, J. Delgado,
“AgentSpace: A Next-Generation Mobile Agent
System” Lecture Notes in Computer Science,
September 1998.
L. M. Silva, G. Soares, P. Martins, V. Batista, and
L. Santos, “Comparing the Performance of Mobile
Agent System: A Study of Benchmarking,”
Technical Report, JAMES Project, 1999.
N. P. Sudmann and D. Jobansen, ‘‘Supporting
Mobile Agent Applications Using Wrappers,”
Proceedings of the 12’ Intemational Workshop on
Database and Expert Systems Applications, pp.
689-695, September 2001.
H. T. Wu, T. C. Hsiao, C. L. Chen, C. M. Su, J. C.
Su and 1. C. Jiang, “An Integrated Teaching and
Learning DSP Lab. System,” Joumal of Science
and Technology Vol. IO, No. 1, pp. 29-36, January
2001.
S. Wolfram, “Mathmatica: A System for Doing
Mathmatics by Computer,” Addison-Wesley,
Reading, MA, 1988.
“IBM’s Java Aglet,”

hm:/lwww.trl.ibm.comiaeletsl
“Texas Instrument,” ~ : l / w . t i . c o m . t w l
“DMKTEK Co. Ltd.,” hm://w.dmatek.com.tw/

