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Abstract 

This paper describes a practical algorithm applied in optimizing the parameters of virtual 

laboratory. The yield maximization problem is first reformulated into a deterministic 

design-centering problem. Macromodeling is then applied to solve the efficient 

design-centering problem. The effectiveness of this methodology is illustrated through a 

simulation example about virtual laboratory. 

1. Introduction 

With the development of new computer technologies, the interactive multimedia 

programming language, and the WorldWideWeb, now, it is possible to simulate engineering 

and science laboratory projects on computers. Internet resources offer students "virtual 

laboratories".  

The Virtual Laboratory is a part of a process aimed at promoting education, particularly in 

higher education. It takes good advantage of the available new information and 

communication technology. In this respect, the project provides students with mobility that 

enables them to be initiative in learning and follow high-quality electrical courses through 

their computer monitors. The principal concrete aim of the project is to develop accessible 

teaching modules through the Internet for fundamental and specialized study projects, 

particularly for subjects that attract large numbers of students. 

However, there are some main difficulties in the project. One of them is prohibitive to 

high cost of the simulations, which involve the solution of a set of nonlinear partial and/or 

ordinary differential equations having hundreds or thousands of variables. The high 

simulation cost propels people to find new efficient methodologies. Two traditional ways to 

solve the difficulties are as follows: The first is to improve the quality of the programme and 

the precision of the processing equipment. The second is to design the process (including 

devices and circuits). The nominal process control parameters (e.g., oxidation time and 

temperature), device geometries(i.e., layout), or circuit topologies can be optimized. 

This paper mainly discusses the design optimization of virtual laboratory. Here, Virtual 

Laboratory is only referred to the Electronic Design Automatic (EDA). The WorkBench is 

the same software as our virtual laboratory programme, but it only can optimize 8 

parameters. Just as the followed description, the number of the parameters is not limited by 

the method. This paper focuses on the problem of adjusting nominal process control 

parameters so as to maximize parametric yield. Meanwhile, modeling is interested because 

the variable screening is that not all of the input variables exert the same influencing level 

on each response. The Macromodeling is efficient enough to improve capability so as not to 

be limited to low dimensional problem.

2. Problem Description of Design-Centering 

For the purpose of this discussion, the parametric process yield of EDA circuit is defined 
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to possess characters that satisfy a set of acceptability constraints specified by the user. The 

process yield, Y, can be expressed as follows: 

ya

y dyyfY )(                      (1) 

here: y represents vector of device characteristics or responses of interest. 

(.)yf  represents joint probability density function(JPDF) of y. 

ya represents output acceptability region in the y-space defined by the acceptability 

constraints, UL yyy }|{ UL

y yyyya .

In general, the vectory is composed of implicit functions of process variables, and the 

evaluation of y requires the execution of a process and device simulator.  

It is convenient to divide the set of process variables, X, into two groups: the set of 

designable process control parameters, and the set of nondesignable physical parameters. To 

emulate the random nature of the fabrication line, each of the process variables is modeled 

as a random variable and is assumed to be normally distributed and statistically independent 

from the others. More specifically, the process variables are expressed as 

d

c

d
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here: 
cx  represents the vector of nominal (deterministic) process control parameter values 

that are designable. 

dx  represents the vector of nominal physical parameter values that are nondesignable. 

dc ,  represent vectors of independent Gaussian random variables whose statistical 

characteristics are assumed to be known a prior
[2] 

and are invariant with respect to their 

respective nominal parameter values. 

The goal of the yield maximization problem (YMP) is to optimize the process yield 

defined in (1) by the judicious choice of the nominal parameters cx , that is 

)(max xY
cx

            subjected to Dxc          (3) 

The methods for solving yield maximization problem (YMP) can generally be categorized 

as either Monte Carlo or geometric. The Monte Carlo methods tackle the problem through 

direct evaluation of the process yield using some forms of Monte Carlo yield estimations. 

Inversely, the geometric methods address the problem indirectly through the construction of 

an approximation to the acceptability region in the input space. Although each class of 

methods has its advantages as well as disadvantages, both of them have the following two 

common difficulties: 

1> Accurate yield estimation is prohibitive through computer, primarily due to high             

simulation cost. 

2> The dimension of x is high, typically on the order of hundreds, which further 

complicates the task of performing optimization. 

This paper is proposed a geometrical-based methodology that overcomes these difficulties. 

Macromodeling helps to reduce the cost of function evaluation during optimization by 

replacing the complex functional relationships between y and x with a set of simplified 

analytic functions substantially. 

3.Design-Centering Formulation 

The deterministic design-centering problem (DCP) is an approximation to YMP that is 

derived through geometric interpretation. Methods for solving DCP usually have a better 

rate of convergence than Monte Carlo methods. DCP is derived from YMP through the 

following geometric reasoning. First, the input acceptability region, xa , is defined in the 

x-space which represents the set of process variable values that yield an acceptable process. 
UL

x yxyyx )(| , write the lower and upper acceptability constraints separately 
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to give as follow: 

mixyxyandxxyyx im

U

iiii

L

ix ,,2,1,0)()(,,0)()(|

here m is the dimension of y. then an equivalent definition of process yield is given in the 

input space       dxxfY

x

x )(                           (4) 

here (.)xf  is the JPDF of x. Assuming that (.)xf is Gaussian and that xa  is convex, 

YMP can be approximated by the geometric problem of inscribing the largest 

JPDF-norm-body
[3]

 in 
xa  through the proper placement of the norm-body’s center. This 

geometrical-based approach to yield enhancement is illustrated in Fig 1, where the 

placement of cx  on the right hand diagram cx , results in a higher process yield. 
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Figure 1. Deterministic design-centering for a two-dimensional example 

Mathematically, DCP can be written as follows: 

)(minmax ci
Qix

xr
c

  subjected to DQixxx cicc .0)(|   (5) 

here: Q represents the set of indexes of the nonredundant acceptability constraints. 

ir represents the absolute minimum distance from cx  to the ith constraint, that is  

2
min)( cci xxxr   subjected to 

Qjijforx

x

j

i

,,,0)(

0)(     (6) 

The main advantage of the above formulation is that it is a deterministic optimization 

problem, which is usually much easier to solve than the original statistical optimization 

problem. However, the cost of constructing an approximation to xa increases rapidly with 

the dimension of x. Furthermore, even if all the acceptability contraint functions are smooth, 

(5) belong to the class of minimax optimization problems. So marcomodeling must be used 

to gain the approximate y. 

4. Macromodeling 

The macromodeling problem can be formally stated as follows: given a set of d responses 

(or outputs) of interest, y1,y2,…,yd, and a set of n input variables, x1,x2,……xn, a set of 

simplified empirical formulas should be detemined: 

),...,,( 11121111 nxxxhy

),...,,( 22222122 nxxxhy

                 

),...,,( 221 nddddd xxxhy

here: iy  represents the ith approximated response .
ih represents the ith macromodel. 

    ijx  represents the jth input variable of 
ih . in  represents the number of input 
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variables for the ith macromodel. 

This will adequately approximate the input/output relationship of the EDA circuit while 

the corresponding sets of model input variables as small as possible. 

The proposed approach begins with a variable screening phase in order to determine a set 

of significant input variables used as the independent variables in the macromodel. This step 

can substantially reduce the number of indispensable variables for the model, so do the 

complexity of the analysis. The variable screening can be accomplished by using an efficient 

experimental design procedure described in the next section. Next a piecewise-regression 

model, in terms of the significant variables. Each of the model pieces is of at most quadratic 

order. That is, each model piece is of the form: 

m

i

n

ij

jiij

m

i

ii xxxy
11

0                        (7) 

here: ix  represents the ith significant input variable. y  represents the approximated 

response. 

x  represents the estimated regression coefficients. ‘m’ represents the number of 

significant input variables.

Then, the key of the experimental design technique is to minimizing the simulation cost 

for variable screening and regression analysis. In a two-level factorial experimental design 

plan, each factor is taken two values respectively: -1 and +1. Thus a full two-level factorial 

plan with n factors requires 2
n

experimental runs and the case of three factors, x1, x2, x3, 

where the response value observed for the kth run is denoted by yk, k=1,…, n ( n=23=8 for 

this example). 

The selection of the q basic factors in a “saturated” plan can be made random since both 

the basic and nonbasic factors are disordered. If n+1 is not an integral power of 2, q can be 

chosen as )1(log 2 nq .
Having identified the set of significant input variables for each response, a macromodel of 

the response is constructed in term of these input variables. The macromodel is composed of 

a number of quadratic least square model pieces. Each of the model pieces has a general 

form given as: 

j

m

i

m

ij

iij

m

i

ii xxxy
11

0
                       (8)

The actual response given by the simulator is assumed to be yy . Where  is a 

random error resulted from the effects of the set of random input variables, which have not 

been included in the macromodel. 

5. Experimental Results 

We will choose remote-control circuit as an example to illustrate the proposed 

design-centering methodology. The remote-control circuit as follows:  
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In this circuit, there are 16 components: {R1, R2, R3, R4, R5, R6, R7, R8, R9, C1, C2, C3, 

C4, C5, C6, L1, Q1, Q2, Q3}, 5116log 2q . The variables out of the original 16 

variables (except Q1, Q2, Q3) were found to be significant and were incorporated into the 

macromodels as input variables. This automatic variable screening technique substantially 

reduced the dimension of the problem space.

Table 1. List of resistance responses 

 R1 R2 R3 R4 R5 R6 R7 R8 R9

+1 3.191 3.193 3.194 3.061 3.195 3.181 3.045 3.196 3.193 

-1 3.191 3.193 2.734 3.195 2.967 3.195 3.195 3.196 3.193 

Vi 0 0 0.231 0.067 0.114 0.007 0.075 0 0 

result N N Y Y Y Y Y N N 

Table 2. List of capacitor and inductance responses 

 C1 C2 C3 C4 C5 C6 L1 

+1 3.193 3.193 3.193 3.193 3.193 3.193 3.193 

-1 3.193 3.193 3.193 3.193 3.193 3.193 3.193 

Vi 0 0 0 0 0 0 0 

result N N N N N N N 

766553

5476

543

)3056.1()2379.1()2008.3(

)2938.4()2501.7()3001.7(

)2402.11()2713.6()3001.1('

xxExxExxE

xxExExE

xExExEyy

In the end, the values of the R3 R4 R5 R6 R7 are { 7.3K, 18.9K, 3.2K, 36.7K, 63K}. 

Part data of the design-centering shows as follows: 

Table 3. Input/output statistics and analysis 

Output variables Output result 

X3 X4 X5 X6 X7 y 

0.5 0.5 0.25 0.125 0.25 3.189 

0.5 0.25 0.25 0.25 0.25 3.191 

0.5 0.25 0.125 0.25 0.25 3.190 
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0.5 0.25 0.125 0.125 0.125 3.192 

0.5 0.25 0.25 0.125 0.125 3.193 

0.5 0.125 0.125 0.125 0.125 3.193 

6. Conclusion 

In this paper, a new methodology is proposed for performing EDA optimization. The 

salient features of the approach include the use of macromodeling and macromodel-based 

deterministic design-centering formulation. The macromodelig scheme automatically selects 

a set of significant variables from all the process variables, thereby substantially decreasing 

the complexity of the modeling procedure. The design-centering methodology has been 

shown to be both robust and efficient through its successful application to EDA circuit 

design. These measures offer a relatively low expense for the virtual laboratory. The 

experiment has been applied in process yield optimization. So, it is desired for being applied 

in circuit yield optimization. In the future, it is necessary to pursue greater simulation speed 

and accuracy.   
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