
Design of the FutureGrid Experiment Management
Framework

Gregor von Laszewski∗, Geoffrey C. Fox∗, Fugang Wang∗, Andrew Younge∗, Archit Kulshrestha∗,
Warren Smith†, Jens Vöckler‡, Renato J. Figueiredo§, Jose Fortes§

, Kate Keahey¶
∗Pervasive Technology Institute, Indiana University, Bloomington, IN 47408, USA

Email: see https://futuregrid.org
†Texas Advanced Computing Center, University of Texas, 10100 Burnet Road, Austin, TX 78758-4497, USA

‡ISI/USC, 4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292, USA
§Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611,USA

¶Computation Institute at the University of Chicago, Chicago IL

Abstract—FutureGrid provides novel computing capabilities
that enable reproducible experiments while simultaneously sup-
porting dynamic provisioning. This paper describes the Future-
Grid experiment management framework to create and execute
large scale scientific experiments for researchers around the
globe. The experiments executed are performed by the various
users of FutureGrid ranging from administrators, software devel-
opers, and end users. The Experiment management framework
will consist of software tools that record user and system actions
to generate a reproducible set of tasks and resource configu-
rations. Additionally, the experiment management framework
can be used to share not only the experiment setup, but also
performance information for the specific instantiation of the
experiment. This makes it possible to compare a variety of
experiment setups and analyze the impact Grid and cloud
software stacks have.

I. INTRODUCTION

FutureGrid (FG) [1] provides computing capabilities that
will enable researchers to tackle complex research challenges
related to the use and security of grids and clouds. These
include topics ranging from authentication, authorization,
scheduling, virtualization, middleware design, interface design
and cybersecurity, to the optimization of Grid-enabled and
cloud-enabled computational schemes for researchers in as-
tronomy, chemistry, biology, engineering, atmospheric science
and epidemiology. FG provides a significant and new exper-
imental computing Grid and cloud test-bed to the research
community, together with user support for third-party re-
searchers conducting experiments on FutureGrid. The test-bed
will make it possible for researchers to conduct experiments
by submitting an experiment plan, which is then executed via
a sophisticated workflow engine, preserving the provenance
and state information necessary to reproduce the experiment.

The test-bed includes a geographically distributed set of
heterogeneous computing systems, a data management system
that will hold both metadata and a growing library of soft-
ware images necessary for cloud computing, and a dedicated
network allowing isolated, secure experiments. The test-bed
will support virtual machine-based environments, as well as
operating systems on native hardware for experiments aimed

at minimizing overhead and maximizing performance. The
project partners will integrate existing open-source software
packages to create an easy-to-use software environment that
supports the instantiation, execution and recording of grid and
cloud computing experiments. Furthermore, with the advent
of emerging cloud technologies, users have a newfound ability
to define their own environment specific to their needs using
virtualized services.

One of the goals of the project is to understand the behavior
and utility of cloud computing approaches. Recently, cloud
computing has become quite popular and a multitude of
cloud computing middleware now exist. However, it is not
clear at this time which of these cloud middleware tools is
preferred amongst both users and administrators. FG provides
the ability to compare these frameworks with each other while
considering real scientific applications. As such, researchers
will be able to measure the overhead of cloud technology by
requesting linked experiments on both virtual and bare-metal
systems. This ability provides valuable information that will
help users decide which infrastructure suits them best and also
help users looking to transition from one environment to the
other.

Participants. FutureGrid is a large-scale test-bed that in-
cludes a multitude of participating sites and collaborators.
The list of primary participants of FutureGrid includes (see
Figure 1) Indiana University, Purdue University, San Diego
Supercomputer Center at University of California San Diego,
University of Chicago/Argonne National Laboratory, Univer-
sity of Florida, University of Southern California Information
Sciences Institute, University of Tennessee Knoxville, Texas
Advanced Computing Center at University of Texas at Austin,
University of Virginia, Center for Information Services, and
GWT-TUD from Technische Universtität Dresden. However,
users of FG do not have to be from these partner organizations.
Furthermore, we hope that new organizations in academia and
industry can partner with the project in the future.

Organization of the Paper. The paper is structured as
follows. First we provide more details to the resources that are
part of the FG testbed in order to illustrate what is possible

Nelson
Resaltado

Nelson
Rectángulo

Nelson
Resaltado

NID10GB/s

10GB/s
10GB/s

10GB/s

10GB/s
1GB/s

Router

11 6

5

12

47

2

7

Germany

France

IU: 11 TF IBM 1024 cores
 6 TF Cray 672 cores
 5 TF SGI 512 cores
TACC: 12 TF Dell 1152 cores
UCSD: 7 TF IBM 672 cores
UC: 7 TF IBM 672 cores
PU: 4 TF Dell 384 cores
UF: 3 TF IBM 256 cores

Interet 2

TeraGrid

Fig. 1. FutureGrid Participants and Clusters

with FutureGrid. Next we introduce the concept of dynamic
provisioning that motivated our architecture while “raining”
an environment onto resources. Next we focus on a particular
portion of the architecture that’s specifically centered around
the experiment management framework. We will describe this
framework in more detail, including a focus on how we
organize experiments, and how images are created and shared
among experiment users.

II. FG FACILITIES

FutureGrid is a national-scale Grid and cloud test-bed
facility that includes a number of computational resources at
distributed locations. The network can be dedicated to conduct
experiments in isolation, including a network impairment
device for introducing a variety of predetermined network
conditions. Figure 1 depicts the geographically distributed
resources that are outlined in Table I in more detail. All
network links are dedicated, except the link to TACC. That
link will initially be shared; we expect to be able to implement
dedicated links as needed dynamically once TeraGrid Phase
III (XD) is implemented. It is planed that FutureGrid will
be connected to an archival storage system that is distributed
among a number of sites (see Table II).

Although the number of systems is small, they do provide
some heterogeneity of the architecture and are connected
by high-bandwidth network links. One important thing is
that most systems can be dynamically provisioned, e.g. these
systems can be reconfigured when needed by special software
that is part of FutureGrid with proper access control by users
and administrators.

A Spirent H10 XGEM Network Impairment emulator [2],
co-located with the core router [3], will provide a central
resource to introduce network latency, jitter, loss, and errors to
network traffic within FutureGrid. It allows for a delay from 50

TABLE II
FUTUREGRID DATA FACILITIES

Capacity File
System Type (TB) System Site
DDN 9550 339 Lustre IU
DDN 6620 120 GPFS UC
SunFire x4170 72 Lustre/PVFS SDSC
Dell MD3000 30 NFS TACC

ms to 15 seconds with a granularity of 16 ns, and for 0-100%
of packet loss and various types of errors with a granularity of
0.0001%. It provides full bidirectional 10G w/64 byte packets,
allowing packet manipulation in the first 2000 bytes, and up
to 16 k frame sizes. A scripting interface is provided through
TCL and a Web interface allows for customization through a
portal. Consequently, this device will provide great flexibility
in enabling a wide variety of experimental conditions for
testing network and Grid applications.

III. FG DYNAMIC PROVISIONING

The goal of dynamic provisioning is to partition a set of
resources in an intelligent way that provides a user defined
environment to any user that makes such a request. This
entails a specific, specialized deployment which can allocate
and deallocate resources in real-time. As such, customized
environments need to be in place and be able to dynamically
add and remove resources depending on the overall system
load and utilization. Dynamic provisioning is used in several
contexts as part of FG:

• Dynamic Resource Assignment. Resources in a cluster
may be reassigned based on the anticipated user require-
ments, e.g. a server may be participating as part of an
HPC application on the machine, but at a later time
the server is removed from the HPC resource pool and

Nelson
Resaltado

TABLE I
FUTUREGRID HARDWARE

System type #
C

PU
s

#
C

or
es

T
FL

O
PS

R
A

M
(G

B
)

St
or

ag
e

(T
B

)

D
ef

au
lt

fil
e

sy
st

em

Si
te

IBM iDataPlex 256 1024 11 3072 †335 Lustre IU
Dell PowerEdge 192 1152 12 1152 15 NFS TACC
IBM iDataPlex 168 672 7 2016 120 GPFS UC
IBM iDataPlex 168 672 7 2688 72 Lustre PVFS UCSD
Cray XT5m 168 672 6 1344 †335 Lustre IU
Shared mem. system ‡40 ‡480 ‡4 ‡640 ‡†335 Lustre IU
IBM iDataPlex 64 256 2 768 5 NFS UF
Total 1337 5600 58 10560 552

†Indicates shared file system. ‡Best current estimate

included through dynamic provisioning into a Eucalyptus
Cloud. Resources that are not used are in a “unused
resource pool”.

• Execution-based Dynamic User Requested Resource
Assignment. At the time of the job execution, a system
is provisioned that fulfills the user’s need at runtime.

• Queue-based Dynamic User Requested Resource As-
signment. Since the provisioning of images is time
consuming, it is often possible to queue such jobs with
the same image requirement in a queue and instantiate
the provisioning before all jobs are executed which are
belong to the queue.

This capability is unique and offers users a new perspec-
tive on exploring systems research within a Cloud or Grid
computing deployment. In its current implementation of Fu-
tureGrid, the dynamic provisioning features are provided by a
combination of using XCAT [4] and [5]. As the term dynamic
provisioning is not consistently used in the community, we
use the term “raining” within the FutureGrid project as a
description for placing an environment onto resources. The
reason is that our use of dynamic provisioning goes beyond
the services offered by common scheduling tools that provide
such features. In fact we want our users to rain an HPC, a
Cloud environment, or a virtual network onto our resources
with little effort. Hence we will provide simple command line
tools supporting this task. A recent example within FutureGrid
is to “rain” a Hadoop environment defined by a user onto a
given cluster. Instead of the user having to learn a complex set
of commands that depend on intrinsic functions of the queuing
system and low level support software, users can simply invoke
a command:

fg-hadoop -n 8 -app myHadoopApp.jar ...

The dynamic provisioning and scheduling of the job is han-
dled exclusively by the FG system. Users and administrators
do not have to set up the Hadoop environment as it is done
for them (see Figure 2).

Fig. 2. Dynamic Provisioning in FG allows high level “raining” of systems
onto the FG resources.

IV. FG CONCEPTUAL OVERVIEW

In order to achieve this high level of abstraction and to sup-
port the rich set of frameworks intended to be introduced by
FG, we have developed an extensive architecture as depicted
in Figure 3

The architecture is composed of the following components:
FG Hardware. As mentioned earlier, FG is built using a set

of NSF sponsored hardware that is geographically distributed
among several sites [6]. The hardware includes IBM iDataPlax
systems of various sizes, a Dell Cluster, and a Cray XT5m. In
addition we have a dedicated network between the resources
and are capable to experiment through a network impairment
device with network parameters.

FG Software. FG is designed to be able to deal with
experiments entailing multiple sets of default software stacks

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

and environments. A user wanting to perform experiments
with Unicore, for example, will be able to obtain access to
a system allowing him to use it on a selected set of hardware.
Providing such software stacks to users is typically done in one
of two ways: (a) the use of a pre-configured environment that
is shared by all FG users, (b) the dynamic instantiation of a
”private” environment controlled by the user (this environment
can be shared based on the user’s preferences and the policies
of FG).

FG Interfaces. FG must be easily accessible to a variety of
user communities. The user communities include FG system
and application users, FG system developers, FG system
administrators, and educational groups. To support this highly
diverse user community, we need to employ command line
tools, API’s, and portals. Some of the communities will need
their own specialized version of these tools to address their
specific needs.

FG Stratosphere. FG provides functionality to monitor the
hardware environment and the software executed on it. It also
provides a sophisticated experiment management framework
allowing users of FG to record and recreate experiments
conducted in order to grantee scientific reproducibility. To
support this effort, planned experiments can be created through
workflows, images can be stored and reused at a later time, and
images can be generated based on simple descriptions in order
to study the effect of different software stacks on applications.

FG RAIN - Runtime Adaptable INsertion Configurator.
Dynamic provisioning is one of the central features of FG
allowing users to instantiate images at runtime and execute
their applications as part of these images. As already pointed
out in the Software Section, multiple mechanisms exist to
dynamically provision resources for the users need. RAIN
will provide a comprehensive set of components to satisfy the
different provisioning scenarios.

FG Security. An important component of FG is to deal
with security. This includes the three A’s: Authentication,
Authorization, and Accounting. One of the major goals for
security within FG is to enable single sign on for all users.
Other tasks include the creation of vetted images to be used
by the user community.

FG Support Software. FG relies on software that is
provided by our team members to provide support for the
entire FG user group. The FG project contains support to
enhance this software in order to support the FG mission. Such
software includes, but is not limited to Nimbus [7], Inca [8],
Pegasus [9], ViNe [10], Vampir, and PAPI.

FG Applications. FG allows application users to try out
the FG hardware and software in order to evaluate if a
particular software environment is of interest and benefit for
the application. Performance experiments can help assessing
the validity of using a particular software stack, environment,
or programming framework.

FG Partners. In future we intend to work with other
partners beyond those funded by the original project. This
includes participants in both academia and industry, depending
on the needs of FG and the participating institutions.

For this paper, we will focus on a subset of architectural
components that focus on the management of FutureGrid
experiments. This includes in particular the organization of
experiments, the generation of images, and the storage of
images. Details of the dynamic provisioning are beyond the
scope of this document and will be discussed in an additional
paper that will be available shortly [11].

V. THE FG EXPERIMENT FRAMEWORK

Experiments are carried out using the scientific method to
answer a question or investigate a problem [12]. As in physics,
FG experiments typically contain one or more hypothesis that
are supported by the experiment or disprove the hypothesis.
They also include an experiment apparatus that is used to
conduct the experiment. Proper recording of these activities
not only allows the reproducibility of the experiment, but
also the sharing of results within an interest group or the
community. Moreover, an experiment apparatus can itself be
a point of research or activities, that allow the creation of
new experiments due to the sheer availability of the apparatus.
This is a common model used in scientific discovery. For
instance many astronomical discoveries would not have been
possible without the invention of the telescope. FG provides
such an elementary scientific instrument for system scientists.
FG experiments require a sufficient description about the
experiment so that a proper record useful for the community
is preserved.

Activities within FutureGrid will be primarily experiment-
based. These activities will be driven by steps that can be
together classified as an experiment. Experiments may vary
in complexity. They may include basic experiments, such as
to utilize a particular pre-installed service and let a researcher
debug an application interactively. They may also include more
sophisticated experiments, such as to instantiate a particular
environment and run a pre-specified set of tasks on the
environment. We envision that a direct outcome of having
such a experiment-centric approach will be the creation of
a collection of software images and experimental data that
provides a reusable resource for application and computational
sciences. FutureGrid will thus enable grid researchers to
conveniently define, execute, and repeat application or grid
middleware experiments within interacting software “stacks”
that are under the control of the experimenter. It will also
allow researchers to leverage from previous experiences of
other experimenters in setting up and configuring experiments,
hence creating a community of users. FutureGrid will support
these pre-configured experiment environments with explicit
default settings so that researchers can quickly select an
appropriate pre-configured environment and use it in their
specific scenario.

To better communicate the scope of the experiment related
activities, we will first introduce a common set of terminology
that we will use as part of this document. In the sections
after that, we will introduce the scope of the Experiment
Management Service, describe the simple layered architecture,

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Rectángulo

Nelson
Nota adhesiva
FG: Future Grid

Fig. 3. FG Architecture Conceptual Overview

and identify tasks that need to be completed to successfully
integrate such a service into FutureGrid.

In order for us to discuss the Experiment Management
system we introduce the following simple terminology.

Experiment management. Experiment management refers
to the ability of a test-bed user to define, initiate, and control
a repeatable set of events designed to exercise some particular
functionality, either in isolation or in aggregate.

Image. An image is series of bytes, namely a file, which can
be loaded onto “bare metal” (real hardware) or on virtualized
hardware using a hypervisor and will provide a complete and
functional operating environment that the user can interact
with. Only one image per node can be loaded directly to
bare metal; multiple images can be loaded onto a Hypervisor.
Images do not extend across nodes but they can support
multiple threads/cores. The bytes in an image encapsulates the
state of persistent storage (e.g. a virtual hard disk, or a hard
disk partition) that can be loaded onto bare metal/hypervisor.
It is useful to distinguish appliances and generic images in
that an appliance targets a specific application and a generic
image only provides an environment for an experiment.

Generic Image. A generic image contains a basic O/S not
targeted towards a specific use or application and as previously
described may be run on real hardware or on a hypervisor. Five

hypervisors are of interest at present within FutureGrid namely
Xen, KVM, VirtualBox, ScaleMP, and OpenVZ. The two O/Ss
of interest for FG are Linux and Windows with a subset of
interesting variants. For Linux these variants currently are
Ubuntu, CentOS, and RHEL. On Windows we are interested
in the newest generation of Windows software such as HPC
server.

Appliances. An appliance is a generic image with additional
application and/or middleware added that is configured and
ready to use upon instantiation. However, initial calibration
or tuning of the appliance will be often necessary before it
can be used. This tuning step is hidden from the users of
FG. Examples for appliances may include an image containing
Gaussian, Matlab, Hadoop, MPI, or Oracle server. An appli-
ance can present multiple applications and middleware to the
user of the appliance.

Virtual Cluster. A virtual cluster is a collection of images
with a virtual interconnect. Currently virtual interconnects are
implemented by University of Florida via ViNE or GroupVPN.
A Virtual Cluster maybe implemented on resources defined by
the FG core services or the user can ask that a Virtual Cluster
be assigned to a particular Cluster.

Imaged Cluster. An imaged cluster is a collection of images
deployed on hardware with a real interconnect. Typically

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

imaged clusters are achieved by defining a cluster and then
specifying the images to be placed on each node. A traditional
TeraGrid job would run on an Imaged Cluster. There is some
need to define “allowed interference” that is the performance
of an imaged cluster can depend on other users either using
network of a given imaged cluster or even sharing a node
within an imaged cluster. The key point to note here is that in
contrast to a traditional HPC cluster the Imaged cluster will
be dynamically provisioned from the images, hence named the
Imaged Cluster.

Account. For users to obtain access to FG, they need to
apply for an account. An account must be part of at least on
valid project to use FG. A user can be part of multiple projects,
so there is no need for having multiple accounts.

Project. A FG project is an elementary usint of request.
A project serves as a convenient abstraction for the users
to manage several experiments to fulfill one research goal.
Although the user may already have accounts different projects
may be requested by the users to clearly distinguish the effort
conducted between them. A project provides general informa-
tion about the requested resources, the group members that
share the resources assigned to this project. It also describes
the types of experiments that are anticipated to be conducted
as part of the project execution. Each project has one or more
experiments.

In order for a project to be granted data must be provided
to support the project request including, but not limited to: a
statement about scientific objectives, the anticipated projects
to be executed, the team members conducting the research, the
publications and presentations given based on the usage of FG
(required to be added at a later time), the projects executed
as part of the account activities and their experiments, and the
projects broader impact.

Experiment. An experiment represents an elementary “ex-
ecution unit”. A project has a particular scientific goal in mind
that may need the execution of one or more experiments.
Such experiments may be organized in a tree or direct acyclic
Graph (DAG) and contain other experiments. An experiment
contains a number of important metadata: experiment session,
the resource configuration , the resources used (apparatus), the
images used, deployment specific attributes, the application
used, the results of the experiments (typically files and data),
and the expected duration of the experiment. An example of
an experiment is running a Hadoop job as part of an academic
class. If we view the class as a project, then each submitted
student job could be viewed as an experiment.

Experiment Apparatus. Often it is desirable to conduct pa-
rameter studies or repetitive experiments with the same setup
in regards to resources used. We refer to such a configuration
as an “experiment apparatus”. Such an apparatus allows the
users to conveniently reuse the same setup without reconfigu-
ration of the FutureGrid resources for different experiments.

Experiment Session. Besides the apparatus we often find
that the apparatus can be used for executing a number of
experiments. In addition, the instantiation of experiments may
require additional configuration in order to address runtime is-

sues. Together the apparatus and the configuration parameters
are building an experiment session that as mentioned can also
be used for multiple experiments.

A. Requirements

In order to specify the requirements for the experiment
management service, we have to consider the FG user com-
munities. This includes

FG Experiment User, a general user who replicates exper-
iments that has been provided by someone else.

FG Experiment developer, user of FG who records his
experiments for replicating and comparing results obtained in
each instantiation of the experiment.

FG Job User, a user that does not care about any of the
issues and just want to run jobs on FG.

Experiment project manager, (includes teachers of
classes), users that are managing the use of FG as part of
projects or classes. In addition we have other important user
communities that are related to the operations of FG. This
user would create a set of experiments pertaining to the field
of interest and classify these as a Project as described in
section V-B.

FG system administrators, who can use information pro-
vided as part of the experiments to debug or improve the FG
operations.

FG management, that is concerned with the use, reporting
and auditing of FG activities.

In order to support these users, we need to identify certain
functionality requirements. This includes but are not limited to
the following functions that follow roughly a basic execution
plan:

• Organize projects and experiments
• Provide a uniform structure so that organization of ex-

periments is possible
• Annotate the experiments so they can be cataloged and

shared (if desired)
• Annotate what the experiment is about
• Annotate which resources are being used
• Annotate which results are produced by the experiment
• Provide information about the nature of the projects and

experiments to the FG management
• Provide a mechanism in which multiple users can easily

collaborate as part of projects or even individual experi-
ments

• Provision resources to conduct the experiments
• Execute an experiment
• Monitor the execution of experiments (irrespective of

owner being individual, group, or management)
• Record all required information for replication of the

experiment
• Reproduce the experiment with the help of the recorded

information

B. Architecture Design Details

Next we focused on the design of the experiment manage-
ment framework. As we organize projects and experiments

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Rectángulo

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Rectángulo

ACCOUNTS
USER+
FIRSTNAME
LASTNAME
USER ID
...

PROJECTS
PROJECT+
APPLICATION INFORMATION
DESCRIPTION
USER ID
...
PROJECT ADMINISTRATORS

USER ID+
USERS

USER ID+

EXPERIMENT+
MANAGER

USER ID+
STAFF

USER ID+
APPARATUS+

ID
RESOURCE+

EXPERIMENT+
APPARATUS: ID
DATE
TIME
JOB+
SERVICE+

PUBLICATIONS
ARTICLE+
REPORT+
TALK+
DEMO+

Fig. 4. FG experiment management data structure.

we must chose an architectural design at an early stage that
supports the functionality associated with it. The experiment
management component is part of what we have called the
FG stratosphere. Besides the experiment management service
it also includes other core services, such as an image manage-
ment, our dynamic provisioning abstractions called rain, and
others. The relationship of the experiment management service
towards other selected components is presented in Figure 3.

Obviously the experiment management service deals with
management of data surrounding an experiment. Before we
go into more detail of the architecture we like to introduce
the data structure that will allow us to deal with high level
aspects of an experiment. In order to manage our experiments
we envision the hierarchical data structure depicted in Figure
4. At this stage we list only the most important entities. A +
behind the category means that the entity can occur one or
more times.

The rationale behind the design of this data structure is
best illustrated by a simple use case. Assume a teacher were
to decide to use FutureGrid as part of his class resources to
train the students on different aspects of cloud computing.
First the teacher has to apply for an allocation through the

FG Web Site. He may want to log into the resources himself,
so he also needs to apply for an account. Now he likes to
add his student to his projects so he can share in each week
a particular resource apparatus on which the students test an
assignment. However, as the teacher is to busy dealing with
the programming assignments himself a teaching assistant is
assigned to help him. At the end each student is supposed to
produce a class paper or project report, as well as giving a
presentation about their work.

It is obvious that such a use case can easily be managed
through our data structure. The Information related to the
allocation is managed by the teacher. He delegates the addition
of users to his system administrator that has a list of students
in the class (in future additional convenience features may be
available through the InCommon framework). The teaching
assistant is added as staff member to the allocation and is
allowed to generate new projects, experiments, and experiment
apparatus that are referred to within the experiments. The
teacher decides to use the model where each week a new
experiment is conducted, that contains for each student in
the next level of the data structure hierarchy a placeholder
for an experiment managed by a student for that week. Each
student is in charge of uploading and managing its own
experiment meta data. An apparatus that has been created
by the teaching assistant can be shared amongst the students.
This helps executing experiments on similar environments. At
the end of the class paper and talks will be uploaded to the
experiment management service.

The FG users are able to maintain through convenient
interfaces this experiment management system and the data
associated with it. The interfaces include a Web portal, a
command line tool, a REST interface, an API in python (other
scripting language interfaces could be derived from that).

C. Experiment Workflow Coordination

As the experiments may be hierarchical, we also provide
convenient mechanisms to manage the metadata associated
with complex hierarchical experiments. Experiments in form
of a workflow are also planned. This includes the possibility of
defining a workflow with common workflow services such as
Pegasus. For the implementation of the workflow component
we will utilize on the lowest level the dynamic provisioning
functionalities, from xCAT and Moab with its more gener-
alized function provided by FG RAIN. The highest level of
workflow coordination may be provided optionally through the
use of workflows such as Pegasus workflows.

It is important to recognize that the features provided
by modern queuing systems have been significantly been
enhanced over the last decade and even after the time our
proposal has been submitted. Thus we are leveraging from
this functionality directly that are typically not provided in
systems such as Globus, Condor, or even Pegasus,

As part of this new capabilities we are developing the fg-
rain and fg-submit commands that will be ultimately helpful
for providing many of the functionalities in regards to pro-
visioning and job submission. As Moab also provides cross

Nelson
Rectángulo

site management, a future version of fg-rain and submit may
also provide the ability to integrate different resources int from
different sites into the same resource pool. In more detail we
are developing:

• the specification of an easy to use command line tool
named fg-experiment allowing the creation of sophis-
ticated experiments and their coordination as workflow
trees and DAGs in the context of FutureGrid,

• the development of a REST interface to interface with
the functionality exposed as part of the fg-experiment
command. This can be achieved while working together
with IU reusing their command line to REST services
generation toolkit,

• the development of a python API with the namespace
futuregrid and convenient classes and methods to provide
the needed functionality,

• the development of educational material demonstrating
the usefulness of the various user interfaces through
tutorials and elaborate examples,

• the development of an experiment repository while lever-
aging the image repository, and

• an experiment management portal
additionally, the experiment management framework must

be tightly integrated into the overall architecture of FG. Hence,
we need to address the following requirements as essential:

• the experiment management Service must be integrated
with the account management system,

• an experiment must be able to utilize the fg-rain, and
fg-run, fg-hadoop, and other commands that are being
developed in parallel,

• the workflow system must be controllable via command
line and can be accessed in shell scripts,

• the system must be easy to use and the prerequisites for
its use must be simple,

• security must be considered while execution, but also
sharing experiments,

• a python interface must exist,
• the requirements on the user to use this system must be

minimal, and
• the requirements on the system to be integrated into the

experiment management harness must be minimal (e.g.
we may not be able to expect that on each machine we
must have condor installed).

To support this integration we must have an experiment
management information service that allows users to access
information in regards to accounts, projects, and experiments

Security requirements demand that the experiment use
vetted images with appropriate privileges. Some privileges
imply that experiment be run with network isolation. The
rules about privileges are less stringent for images built on
virtual machines. The initial experiment request needs to be
checked for being “reasonable” (e.g. consistent with project
and allocation), and Security issues. This motivates us the
provide an image repository and an image generation service
that can be utilized by the experiment management service.

D. Image Repository Service
The FG image repository service allows FG users to store

the images that can either be owned by or shared among
individual users or groups. Using the FG Image Repository
service, users can query, store, share, upload, and register
images, and choose an them for dynamic provisioning. Most
related cloud service offerings provide repository service.
xCAT manages the images through Linux file structure and
some table information; Nimbus uses the Linux file system and
symbolic links to manage the images(though they are moving
to a similar back end storage service schema as Amazon’s S3
[13]); Amazon Web Services(AWS) [14], as well as its open
source equivalence Eucalyptus [15], has the most sophisticated
and well-defined functionality set and interface for an image
repository service among these.

FutureGrid leverages efforts from xCAT, Nimbus, and Eu-
calyptus to provide an image repository for cloud services.
However, we have to remind us that FG not only supports
image usage within these frameworks, but even on a lower
level. Hence, we need a unifying image repository that also
integrates with our experiment management needs. None of
the other systems provides this functionality. By developing
an FG repository we can maintain specific data that assists
performance monitoring and user/activity accounting. By in-
troducing a customized image repository we will be able to
choose appropriate storage mechanism that is suitable for the
FutureGrid platform

There are some key requirements and system constraints that
have a significant impact on the architecture. These include:

• The image repository should be accessible by users
through command line client or a web portal. The se-
curity architecture imposed to the FG system ensures the
security of this sub-system.

• The repository provides a unique interface to store various
kind of image for different systems, e.g., Nimbus, and
Eucalyptus. The provisioning sub-system and the image
generation service should be aware of this. That is,
during image creation, appropriate attributes should be
assigned according to future use; during system provision,
the provisioning service will do the proper instantiation
according to the image attributes.

• The repository could be a single point of failure and the
bottleneck of the performance. So the storage mechanism
should be a distributed one which provides higher perfor-
mance and more reliability.

• To ease the development of the web portal client, REST
services are preferred. Achieving security for the REST
services needs to be considered along with the confor-
mance of the whole FG security architecture.

The implementation of the distributed FG image repository
contains a number of subcomponents that are depicted in
Figure 5

E. Image Generator Service
The image generator service is the central component of

the overall Image Management system. It is responsible for

Nelson
Rectángulo

Nelson
Rectángulo

Fig. 5. Image Repository

taking in user requirements about image size, type, and kind,
and formatting a new image that, once vetted and stored, can
be deployed on FG hardware. The image generator will start
with a base image that is selected by the user. This image is
specifically crafted by FG administrators to guarantee security
and integration with the rest of FG. It is also designed to
be the smallest file footprint possible, to minimize wait time
and network traffic when deploying images. This image is
next mounted and the software stack selected is deployed onto
the system, along with any other files specified. The image
generator then links the new image to BCFG2 [16] and submits
it to the image repository.

BCFG2 retains another major component of the Image
Management system. In fact, it does most of the management
actions for all the VMs deployed throughout FG. BCFG2
itself is a critical tool to help system administrators produce
a consistent, reproducible, and verifiable description of their
environment, and offers visualization and reporting tools to
aid in day-to-day administrative tasks. Within FG’s BCFG2
deployment, we have a number of base deployment groups
setup that correspond to the pre-supported OS types added by
administrators to the Image Generator. From there, a given
VM will be assigned another unique group which contains
the software stack specified by the user. This allows for all
software and files installed on the VM to be managed, updated,
and verified by BCFG2. This group is created and defined by
the image generator before initial deployment.

As described above, there are a number of base images that
are supported within FutureGrid. These UNIX-based images
represent the minimal installation possible within the OS itself.
Because many of these image will be leveraged to provide
platform-level services, there is no need to add extra packages
and bloat to images, especially when the images are to be
deployed and migrated throughout FG resources. The base OS
is created as a separate .img file by FG administrators with
the necessary BCFG2 client pre-installed along with any other

monitoring software deemed fit by the FG Performance group.
Command line tools and interface through a portal will

simplify the generation of images allowing users to quickly
generate and regenerate images.

The important issue to remember is that the image genera-
tion is integrated in well defined process and allows to generate
images giving access to users of FG either on an individual
or a group basis. In case a user wants to share his image with
other users, he can do so by either sharing the way how the
image is to be generated, or by allowing access of a generated
image to a particular group of FG users.

This image creation process is depicted in Figure 6. An
image is generated by the user either via a command line or
portal. He selects specific features of the image as needed
including the target deployment selection such as OS, and
hardware, as well as base software, FG software, Cloud
software, user application software and other software. This
creates then a base image. This base image is than deployed on
a test server and updated and checked for security. The result
is a deployable image on FG hardware. At time of deployment
additional security updates are conducted. It is clear that the
time between the creation of a deployable and deployed image
has an impact on security. Images found insecure could still
be deployed, but the network connectivity to such an image is
restricted.

Our administrative staff will use the same process to create
a base image for FG that can be modified by users through
the process specified above. This makes it possible to provide
different images on the lowest level and not just as part of
a virtualized image deploy as part of IaaS frameworks. This
is an extension to the Amazon model that only deals with
deploying images in virtual machines.

As we expect that customized images are contributed by
the user community, we encourage a viral community model
while emphasizing reuse of the images as they can be shared
and distributed through our image repository.

VI. RELATED RESEARCH

In the Grid community workflow and experiment man-
agement systems have been developed before. Such systems
include the Java CoG Kit that not only provided a sophisti-
cated workflow system, but had also an effort published to
manage job submissions to the Grid through an experiment
management system [17], [18], [19]. Additionally, a follow
up of the Java CoG Kit known as Cyberaide was providing
a sophisticated shell environment that allowed to conduct ex-
periments within the shell using object abstractions. We hope
to reintroduce such object abstractions into FG in upcoming
efforts. We also will work on a FG shell and take the lessons
into account that we have learned from Cyberaide. However,
the use of an experiment in FG is more enhanced beyond the
abstraction of a number of jobs submitted to a production Grid.

Another important project is called myExperiment [20],
which allows the sharing of scientific workflows among its
many users. This system has been successfully used. However,
this system also uses already deployed Grid infrastructures and

Nelson
Resaltado

Fig. 6. Image Creation

does not take into account the specific needs of dealing with
experiment management while integrating image management
and image creation.

VII. CONCLUSION

In this paper we have introduced the design of the Fu-
tureGrid experiment management framework. We focuson
the concepts that are used to to manage experiments for
preparing resusable and reproducable experiments. Essential
to this management effort is how experiments are organized,
they interface with user accounts, and how software stacks
are integrated through te utilization of images. Such images
are instantiated onto the FG resources through what we term
raining. Once a stack is rained and properly configured it
can be used to run experiments. The system is currently
implemented. FutureGrid already provides today to a number
of early users access to HPC, Grid and Cloud environments
such as Nimbus, Eucalyptus, ViNe, Genesis II, and Unicore.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported in part by
the National Science Foundation under Grant No. 0910812 to
Indiana University for ”FutureGrid: An Experimental, High-
Performance Grid Test-bed.” Partners in the FutureGrid project

include U. Chicago, U. Florida, San Diego Supercomputer
Center - UC San Diego, U. Southern California, U. Texas at
Austin, U. Tennessee at Knoxville, U. of Virginia, Purdue I.,
and T-U. Dresden.

REFERENCES

[1] “FutureGrid,” Web Page, 2009. [Online]. Available: http://www.
futuregrid.org

[2] The Network Impairments device is Spirent XGEM. [Online]. Avail-
able: http://www.spirent.com/Solutions-Directory/Impairments GEM.
aspx?oldtab=0&oldpg0=2

[3] The FG Router/Switch is a Juniper EX8208. [Online]. Available: http:
//www.juniper.net/us/en/products-services/switching/ex-series/ex8200/

[4] “xCAT Extreme Cloud Administration Toolkit.” [Online]. Available:
http://xcat.sourceforge.net/

[5] “bcfg2.” [Online]. Available: http://www.adaptivecomputing.com/
products/index.php

[6] “FutureGrid Hardware.” [Online]. Available: http://www.futuregrid.org/
hardware

[7] “Nimbus Project.” [Online]. Available: http://www.nimbusproject.org/
[8] S. Smallen, K. Ericson, J. Hayes, and C. Olschanowsky, “User-level grid

monitoring with Inca 2,” in Proceedings of the 2007 Workshop on Grid
Monitoring (GMW’07). Monterey, CA: ACM, New York, 25 Jun. 2007.

[9] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming Journal,
vol. 13, no. 3, pp. 219–237, 2005.

[10] M. Tsugawa and J. Fortes, “A virtual network (vine) architecture for grid
computing,” in Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, Apr 2006, p. 10 pp.

[11] G. von Laszewski and et. all., “FG Dynamic Provisioning,” unpublished.
[12] Wikipedia, “Experiment,” Web Page. [Online]. Available: http:

//en.wikipedia.org/wiki/Experiment
[13] “Amazon Simple Storage Service,” Web Page. [Online]. Available:

http://aws.amazon.com/s3/
[14] “Amazon Web Services.” [Online]. Available: http://aws.amazon.com/
[15] “Eucalyptus Community.” [Online]. Available: http://open.eucalyptus.

com/
[16] “bcfg2.” [Online]. Available: http://trac.mcs.anl.gov/projects/bcfg2
[17] G. von Laszewski, T. Trieu, P. Zimny, and D. Angulo, “The Java CoG

Kit Experiment Manager,” Argonne National Laboratory, Tech. Rep.,
Jun. 2005.

[18] G. von Laszewski, Gregor, T. Trieu, P. Zimny, and D. Angulo, “The
Java CoG Kit Experiment Manager,” in GCE06 at SC06, 2006.

[19] G. von Laszewski, “Java CoG Kit Workflow Concepts,” Journal of Grid
Computing, Jan. 2006, http://dx.doi.org/10.1007/s10723-005-9013-5.

[20] D. D. Roure, C. Goble, S. Aleksejevs, J. B. Sean Bechhofer,
D. Cruickshank, P. Fisher, N. Kollara, D. Michaelides, P. Missier,
D. Newman, M. Ramsden, M. Roos, K. Wolstencroft, E. Zaluska, and
J. Zhao, “The evolution of myexperiment,” Website, 2010. [Online].
Available: http://eprints.ecs.soton.ac.uk/21458/1/myExpIEEEfinal.pdf

http://www.futuregrid.org
http://www.futuregrid.org
http://www.spirent.com/Solutions-Directory/Impairments_GEM.aspx?oldtab=0&oldpg0=2
http://www.spirent.com/Solutions-Directory/Impairments_GEM.aspx?oldtab=0&oldpg0=2
http://www.juniper.net/us/en/products-services/switching/ex-series/ex8200/
http://www.juniper.net/us/en/products-services/switching/ex-series/ex8200/
http://xcat.sourceforge.net/
http://www.adaptivecomputing.com/products/index.php
http://www.adaptivecomputing.com/products/index.php
http://www.futuregrid.org/hardware
http://www.futuregrid.org/hardware
http://www.nimbusproject.org/
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Experiment
http://aws.amazon.com/s3/
http://aws.amazon.com/
http://open.eucalyptus.com/
http://open.eucalyptus.com/
http://trac.mcs.anl.gov/projects/bcfg2
http://eprints.ecs.soton.ac.uk/21458/1/myExpIEEEfinal.pdf
Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

Nelson
Resaltado

	Introduction
	FG Facilities
	FG Dynamic Provisioning
	FG Conceptual Overview
	The FG Experiment Framework
	Requirements
	Architecture Design Details
	Experiment Workflow Coordination
	Image Repository Service
	Image Generator Service

	Related Research
	Conclusion
	Acknowledgments
	References

