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Design and Analysis of Computer
Experiments

Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn

Abstract. Many scientific phenomena are now investigated by complex
computer models or codes. A computer experiment is a number of runs of
the code with various inputs. A feature of many computer experiments is
that the output is deterministic—rerunning the code with the same inputs
gives identical observations. Often, the codes are computationally expensive
to run, and a common objective of an experiment is to fit a cheaper predictor
of the output to the data. Our approach is to model the deterministic output
as the realization of a stochastic process, thereby providing a statistical
basis for designing experiments (choosing the inputs) for efficient predic-
tion. With this model, estimates of uncertainty of predictions are also
available. Recent work in this area is reviewed, a number of applications
are discussed, and we demonstrate our methodology with an example.

Key words and phrases: Experimental design, computer-aided design,

kriging, response surface, spatial statistics.

1. INTRODUCTION

Computer modeling is having a profound effect on
scientific research. Many processes are so complex
that physical experimentation is too time consuming
or too expensive; or, as in the case of weather model-
ing, physical experiments may simply be impossible.
As a result, experimenters have increasingly turned to
mathematical models to simulate these complex sys-
tems. Advances in computational power have allowed
both greater complexity and more extensive use of
such models. Virtually every area of science and tech-
nology is affected. Our direct experience has been with
applications in combustion, VLSI-circuit design, con-
trolled-nuclear-fusion devices, plant ecology, and
thermal-energy storage, but this is only a small
sample.
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Computer models (or codes) often have high-
dimensional inputs, which can be scalars or functions.
The output may also be multivariate. In particular, it
is common for the output to be a time-dependent
function from which a number of summary responses
are extracted. For simplicity here, we shall assume
that interest is focused on a relatively small set of
scalar inputs, x, and on a single scalar response, Y.
Making a number of runs at various input configura-
tions is what we call a computer experiment. The
design problem is the choice of inputs for efficient
analysis of the data.

The computer models we address in this article are
deterministic; replicate observations from running the

‘code with the same inputs will be identical. It is this

lack of random error that makes computer experi-
ments different from physical experiments, calling for
distinct techniques.

In the next section we describe some applications.
An understanding of the scientific background and
objectives will be helpful in Section 3 where the role
of statistics in modeling deterministic systems is dis-
cussed. This organization also parallels our research
program, which has largely responded to a number of
examples. Our statistical model, adopted from kriging
in the spatial statistics literature and described in
Section 4, treats the response as if it were a realization
of a stochastic process. This provides a statistical basis
for computing an efficient predictor of the response
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at untried inputs and allows estimates of uncertainty
of predictions. Within this framework, Section 5 dis-
cusses design criteria and algorithms for construction
of designs. Applying these methods to an electronic-
circuit simulator in Section 6 demonstrates what is
already possible. On the other hand, one of the pur-
poses of this paper is to highlight open problems and
questions. Some of these are discussed and summa-
rized in Section 7.

2. EXAMPLES AND OBJECTIVES

Kee, Grecar, Smooke and Miller (1985) described a
fluid-dynamics model for flames which solves a com-
plex set of partial differential equations. In an ongoing
study with M. Frenklach and H. Wang, the input
vector is taken to be five rate constants controlling
five of the chemical reactions, and the response is the
flame velocity. The numerous other inputs to the code
are set at standard values based on knowledge of the
chemistry. The ultimate objective here is to tune the
computer model, that is find rate constants yielding a
flame velocity that matches physical data. A physical
analog of this experiment is impossible, because the
rate constants are indeed constants and cannot be
manipulated in reality. The need for careful design of
the inputs is underlined by the fact that a single run
of the code takes up to 20 minutes on a Cray X-MP.

Following Frenklach and Rabinowitz’s work, Sacks,
Schiller and Welch (1989) discussed examples of
methane combustion based on the solution of a large
system of (ordinary) differential equations arising
from chemical kinetics. Although the objective is sim-
ilar to that of the above flame example, the system of
equations is simpler and the numerical complexity is
less, allowing statistical design and analysis for a
larger set of inputs.

Another important application area is quality im-
provement of integrated circuits. This can involve
simulation of both the manufacturing process and the
circuit. For example, Nassif, Strojwas and Director
(1984) described the FABRICS II simulator and ap-
plied it to the processing of a ring oscillator. In these
applications, the inputs are circuit parameters such as
nominal transistor sizes and/or process parameters
such as reagent doses, and the response might be a
circuit delay time. Often, process variability is incor-
porated in these models by Monte Carlo sampling of
a noise distribution (e.g., Singhal and Pinel, 1981).
Conditional on the noise inputs, however, the simu-
lator is deterministic. The usual objective is to find
settings of the engineering or process parameters that
make the response insensitive to noise, as emphasized
in recent years by Taguchi (1986) and others.

Following Taguchi, the input variables x can often
be divided into control factors x.., and noise factors

Xnoise- 111 & circuit-simulator example studied by Welch,
Yu, Kang and Sacks (1988), the control factors were
transistor dimensions and the noise factors corre-
sponded to manufacturing-process variability. The re-
sponse y was a measure of the asynchronization of
two clocks, ideally zero. Generally, given a loss func-
tion L(y), a “parameter design” problem can be for-
malized as minimizing expected loss

f L [y (xcom xnoise)] dF (xnoise)

Over X.on. Here T (xnoise) 1S an assumed distribution of
the noises. In the example, L(y) was y? and T was
approximated by a uniform distribution on five noise
combinations to represent typical and extreme noise
conditions.

Another example is a thermal-energy storage model,
TWOLAYER, created by A. Solomon and colleagues
at Oak Ridge National Laboratory. This simulates
heat transfer into and out of a wall containing two
layers of phase-change materials. Currin, Mitchell,
Morris and Ylvisaker (1988) described a simple exper-
iment with melting temperature and layer thickness
as inputs. The response was a heat-storage-utility
index, and the main objective was to determine con-
figurations of the input parameters yielding high val-
ues of the index. The computational time for a single
run, normally several minutes on a Cray X-MP, was
reduced by Currin, Mitchell, Morris and Ylvisaker
(1988) for the purposes of their experiment by requir-
ing only a coarse solution to the differential equations
of the computer model.

These examples illustrate that the computer ex-
perimenter, like the physical experimenter, can
have many purposes in mind. We see three primary
objectives:

e Predict the response at untried inputs.
e Optimize a functional of the response.
e Tune the computer code to physical data.

These objectives prompt basic statistical questions:

e The design problem: At which input “sites” S =
{s1, -+, Sa} should data y(s1), - -+, y(s,) be col-
lected?

e The analysis problem: How should the data be used
to meet the objective?

In this article we concentrate on the prediction
objective, as it is plausibly the most basic. If a suffi-
ciently precise predictor can be found, the experimen-
ter then has a cheap surrogate for the simulator.
“What if ” questions can be explored, optimization can
be performed on the predictor, etc.

3. THE ROLE OF STATISTICS

These deterministic computer experiments differ
substantially from the physical experiments per-
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formed by agricultural and biological scientists of the
early 20th century. Their experiments had substantial
random error due to variability in the experimental
units. Relatively simple models were often successful.
The remarkable methodology for design of experi-
ments introduced by Fisher (1935) and the associated
analysis of variance is a systematic way of separating
important treatment effects from the background
noise (as well as from each other). Fisher’s stress on
blocking, replication and randomization in these ex-
periments reduced the effect of random error, provided
valid estimates of uncertainty, and preserved the sim-
plicity of the models.

The above deterministic examples also differ from
codes in the simulation literature (e.g., Kleijnen,
1987), which incorporate substantial random error
through random number generators. It has been nat-
ural, therefore, to design and analyze such stochastic
simulation experiments using standard techniques for
physical experiments.

Apparently, McKay, Conover and Beckman (1979)
were the first to explicitly consider experimental de-
sign for deterministic computer codes. They intro-
duced Latin hypercube sampling, an extension of
stratified sampling which ensures that each of the
input variables has all portions of its range repre-
sented. Latin hypercubes are computationally cheap
to generate and can cope with many input variables.
These designs are aimed at an objective different from
those we discussed in Section 2: namely, how a known
distribution of the inputs propagates through to the
output distribution. (Of course, conditional on the
inputs, the output is still deterministic.) For this pur-
pose, Iman and Helton (1988) compared Latin hyper-
cube sampling with Monte Carlo sampling of a
response surface replacement for the computer model.
The response surface was fitted by least squares to
data from a fractional-factorial design. They found in
a number of examples that the response surface could
not adequately represent the complex output of the
computer code but could be useful for ranking the
importance of the input variables. Because Latin hy-
percube sampling exercises the code over the entire
range of each input variable, it can also be a systematic
way of discovering scientifically surprising behavior,
as noted in Iman and Helton (1988).

In the absence of independent random errors, the
rationale for least-squares fitting of a response surface
is not clear. Of course, least squares can be viewed as
curve fitting and not necessarily employing or relying
on the assumption that the departures (differences
between the response and the regression model) be-
have like white noise. The usual problem of choosing
the regression model is compounded if the response is
complex. Moreover, the fit will not generally interpo-
late the observed data (where the function is known

exactly) unless there are as many estimable coeffi-
cients in the regression as there are runs.

Despite some similarities to physical experiments,
then, the lack of random (or replication) error leads
to important distinctions. In deterministic computer
experiments:

e The adequacy of a response-surface model fitted
to the observed data is determined solely by sys-
tematic bias.

e The absence of random error allows the complex-
ity of the computer model to emerge.

o Usual measures of uncertainty derived from least-
squares residuals have no obvious statistical
meaning. Though deterministic measures of un-
certainty are available (e.g., max |y(x) — y(x)|
over x and a class of y’s), they may be very difficult
to compute.

¢ Classical notions of experimental unit, blocking,
replication and randomization are irrelevant.

While the pioneering work of Box and Draper
(1959) has relevance to the first of these points, it is
unclear that current methodologies for the design and
analysis of physical experiments [e.g., Box and
Draper, 1987; Box, Hunter and Hunter, 1978; Fisher
(1935); and Kiefer (1985)] are ideal for complex, de-
terministic computer models. Lest the reader wonder
whether statistics has any role here, we assert that:

o The selection of inputs at which to run a computer
code is still an experimental design problem.

e Statistical principles and attitudes to data analy-
sis are helpful however the data are generated.

e There is uncertainty associated with predictions
from fitted models, and the quantification of un-
certainty is a statistical problem.

e Modeling a computer code as if it were a realiza-
tion of a stochastic process, the approach taken
below, gives a basis for the quantification of un-
certainty and a statistical framework for design
and analysis.

4. MODELING AND PREDICTION

This section discusses models for computer experi-
ments and efficient prediction. Experimental design
for this predictor is the subject of the next section.

The model we adopt here treats the deterministic
response y(x) as a realization of a random function
(stochastic process), Y (x), that includes a regression
model,

(1) Y@ = 3 6@ + Z).
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The random process Z(-) is assumed to have mean
zero and covariance

V(w, x) = ¢’R(w, x)

between Z (w) and Z(x), where o2 is the process vari-
ance and R(w, x) is the correlation. One rationale is
that departures of the complex response from the
simple regression model, though deterministic, may
resemble a sample path of a (suitably chosen) sto-
chastic process Z(-). Alternatively, Y(-) in (1) may
be regarded as a Bayesian prior on the true response
functions, with the 8’s either specified a priori or given
a prior distribution.

The use of a stochastic process as a prior on a class
of functions has a long history. Diaconis (1988) gave
an interesting account of early uses (back to H.
Poincaré in the 19th century) in one-dimensional in-
terpolation and integration. Suldin (1959, 1960) used
Brownian motion and integrals of Brownian motion
to develop quadrature formulas in one dimension.
Sacks and Ylvisaker (1970) independently considered
the same problem for a wider class of processes, and
the Brownian motion model has re-emerged in Smale
(1985). Corresponding efforts in d dimensions began
in Ylvisaker (1975). See Ylvisaker (1987) for a more
recent discussion. Sacks and Ylvisaker (1985) used
models of the form (1) with added independent meas-
urement error for one-dimensional (physical) experi-
mental design and analysis. Sacks, Schiller and Welch
(1989) employed such models (without measurement
error) for prediction in computer experiments with
multi-dimensional inputs.

One method of analysis for such models is known
as kriging (Matheron, 1963). Given a design S =
{s1, - -, sn} and data ys = {y(s1), - - -, ¥(sn)}’, consider
the linear predictor

y(x) =c’(x)ys

of y(x) at an untried x. Taking a classical frequentist
stance, we can replace ys by the corresponding random

quantity Y, = [Y(sy), - -+, Y(s,)]’, treat y(x) as ran-

dom, and compute the mean squared error of this
predictor averaged over the random process. The best
~ linear unbiased predictor (BLUP) is obtained by
choosing the n X 1 vector c(x) to minimize

(2) MSE[J(x)] = E[¢’(x)Ys — Y(x)]?
subject to the unbiasedness constraint
(3) Elc’(x)Ys] = E[Y (x)].
Alternatively, a Bayesian approach would predict
¥(x) by
(4) Y(x) = E[Y(x) | ys],

the posterior mean. The frequentist and Bayesian
viewpoints will generally lead to different methods

and results, except in the special case of a Gaussian
process for Z(-) and improper uniform priors on the
B’s. It is an old result that the BLUP in the Gaussian
case is the limit of the Bayes predictor as the prior
variances on the (’s tend to infinity (e.g., Parzen,
1963, Section 6).

Kimeldorf and Wahba (1970) investigated classes
of prior processes for which the Bayes estimate (4) is
a smoothing spline. Blight and Ott (1975) used a
stochastic process as a Bayesian prior on the departure
function for one-dimensional x. Steinberg (1985) and
Young (1977) mitigated the effects of model in-
adequacy by representing y(x) as a polynomial of
arbitrarily-high or infinite degree and assigning a
Bayesian prior to the coefficients. O’Hagan (1978,
Section 3) formulated a general Bayesian approach,
in which the prior on y(x) is a general multidi-
mensional Gaussian process. For a more detailed
discussion of the Bayesian viewpoint applied to
computer experiments see Currin, Mitchell, Morris
and Ylvisaker (1988).

In this article, we shall focus mainly on the kriging
predictor, partly for ties with methodology in use in
other areas and partly to simplify the exposition.
Moreover, the use of Gaussian spatial processes pro-
vides a bridge to the Bayesian viewpoint. Where the
Bayesian view provides additional insight, however, it
will be mentioned.

To give some technical details connected with im-
plementing the BLUP of the response at an untried
input we use the notation

fx) =[fix), ---, fulx)]
for the k functions in the regression,
f ,(.31)
f'(sn)
for the n X k expanded design matrix,

R={R(s;, s)}, 1<si=n;l1=<j=n,

F =

for the n X n matrix of stochastic-process correlations
between Z’s at the design sites, and

r(x) = [R(sy, %), -+, R(sn, x)]’

for the vector of correlations between the Z’s at the
design sites and an untried input x. With these defi-
nitions, the MSE (2) is

(5) o’[1 + ¢’ (x)Rec(x) — 2¢’(x)r(x)],

and the unbiasedness constraint (3) is F’c(x) = f (x).
Introducing Lagrange multipliers A(x) for the con-

strained minimization of the MSE, the coefficient ¢ (x)
of the BLUP must satisfy

0 F'\[Ax)) _ [f(x)
© (F R)(c(x))‘(r(x))‘
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Then, by inverting the partitioned matrix, the BLUP
can be written as

(7 y(x) = f'(x)B.+ r'(x)R"Y(Ys — FB),

where 3 = (F’R™'F)™'F’R ™Y is the usual generalized
least-squares estimate of 8. Under the model, the two
terms on the right of (7) are uncorrelated, and the
second can be interpreted as a smooth of the residuals.
Therefore, the fit can be viewed as two stages: obtain
the generalized least-squares predictor and then inter-
polate the residuals as if there were no regression
model. ‘

A convenient representation for the MSE (2) is
obtained by substituting (6) in (5) to give

MSE[ 5 ()]

(8) !
- 02[1 - ('@ "‘x))@ I’,;) (';23)]

Equations (7) and (8) are also the limiting posterior
mean and variance of Y(x) when a diffuse prior is
placed on the 8’s.

Of course, the correlation R (w, x) has to be specified
to compute any of these quantities. It-should reflect
the characteristics of the output of the computer code.
For a smooth response a covariance function with
some derivatives would be preferred, whereas an ir-
regular response might call for a function with no
derivatives.

A natural class is the stationary family R(w, x) =
R(w — x), presuming that any anticipated nonstation-
ary behavior can be modeled via the regression com-
ponent. Within this family we restrict attention to
correlations R(w, x) = []R; (w; — x;), which are prod-
ucts of one-dimensional correlations. Of special inter-
est to us are those of the form

9) R(w, x) = [] exp(—6;| w; — x;|7),

where 0 < p < 2. (We can also permit p to vary
with j.) The case p = 1 is the product of Ornstein-
Uhlenbeck processes; these are continuous but other-
wise not very smooth. The case p = 2 gives a process
with infinitely differentiable paths (mean square
sense) and is useful when the response is analytic.

An alternative correlation function, related to
(9) with p = 1, is the product of linear correlation
functions,

(10) R(w, x) = [I(1 — 6;|w; — x;|)+.

The predicted response y (x) using this correlation is
a linear spline. From a one-dimensional correlation
function R;(x;, w;), a smoothed correlation can be
obtained by integrating,

R;(wj, x) = f f R;(u, v)du dv.

Such correlations are not stationary. However, as
shown by Mitchell, Morris and Ylvisaker (1988), sta-
tionary versions can be produced by a modified tech-
nique. In particular, the cubic correlation on the unit
cube

(11) [I[1 — a(w; — x)* + b;|w; — %1%,

for certain choices of q; and b;, is the stationary ver-
sion of integrating (10) and produces cubic spline
predictors.

The product form of the correlations is especially
convenient for some of our computations. This rules
out correlations like

(12) R(w, x) = exp(—0||w — x|),

where | - || is Euclidean distance in d dimensions, but
we are optimistic that the product families already
provide enough flexibility for adequate prediction in
most cases.

Given the family of correlations, there still remains
the question of selecting or estimating the parameters
of the family [6; and p in (9) say]. In Currin, Mitchell,
Morris and Ylvisaker (1988) and Sacks, Schiller and
Welch (1989), we have found that cross validation
and maximum likelihood estimation (MLE) are use-
ful at the analysis stage (i.e., after data have been col-
lected) and in data-adaptive sequential design (see
Section 5).

Assuming a Gaussian process, the likelihood is a
function of the 8’s in the regression model, the process
variance o2, and the correlation parameters. Given the
correlation parameters, the MLE of the B’s is the
generalized least-squares estimate, and the MLE
of 62 is

#* = (vs = )R (s — FP).

With these definitions of 3 and &2, the problem is to
minimize (det R)Y"52, which is a function of only the
correlation parameters and the data.

5. EXPERIMENTAL DESIGN

5.1. Introduction

The design of deterministic computer experiments
has been partly addressed in the literature. For ex-
ample, Sacks and Ylvisaker (1984, 1985), Welch
(1983) and references mentioned therein have consid-
ered nonparametric systematic departures from
regression models. Random error is also included, but
the resulting sampling-variance contribution to mean
squared error can be set to zero, and these approaches
have helped shape our formulation. For the most part,
however, the designs used for fitting predictors have
been those developed for physical experiments. Such
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designs typically have appealing features of symmetry
and are often optimal in one or more senses in settings
which include random noise. Their appropriateness
for computer experiments, however, is by no means
clear. Latin hypercube sampling, discussed in Sec-
tion 3, is aimed at objectives different from those we
have in mind.

There has also been some work in design for nu-
merical integration, where function evaluations can
be viewed as a computationally cheap computer ex-
periment. Much is known about design for one-
dimensional quadrature. In particular, Sacks and
Ylvisaker (1970) constructed good designs (finite n)
from asymptotically (n — ) optimal designs. These
methods, however, do not carry over to d > 1 dimen-
sions (see Ylvisaker, 1975). Similarly, in the numerical
analysis literature (Davis and Rabinowitz, 1984) re-
sults for d = 1 offer little guide to d > 1.

5.2. Design Criteria

For a fixed number of runs, n, and for specified
correlation structure R, we need a criterion for choos-
ing a design that predicts the response well at untried
inputs in the experimental region 2°. Here, we con-
sider functionals of the MSE matrix or kernel

M = {E[Y(w) — yW)[Y(x) — 3(x)]}

for all w and x in 2. The diagonal elements are the
MSE[y(x)] given in (8). In the Bayes case when the
B’s in (1) are known constants, M is just the posterior
covariance matrix of the process. When the 8’s have
prior variances that tend to infinity, M is the limiting
posterior covariance matrix of Y(-). We now list var-
ious criteria based on M.

Integrated Mean Squared Error (IMSE). The IMSE
criterion chooses the design S to minimize

L MSE[y(x)]¢ (x)dx

for a given weight function ¢ (x). From (8) the IMSE
can be written as

-1
o) _ 0 F’
o { 1 trace[( F R )

f)f'(x) fl)r'(x)
f (r(x)f’(x) r(x)r'(x))"’(")d’“]}'
These integrals simplify to products of one-dimen-
sional integrals if 2 is rectangular and the elements
of f(x) and r(x) are products of functions of a single
input factor. Thus, polynomial regression models and
product correlations can be numerically convenient.
The IMSE criterion is essentially the trace of M
(suitably normalized). We assume that ¢(x) is uni-
form, though other weights cause no real difficulty.

(13)

This criterion has proved to be effective in terms of
actual squared error of prediction in test examples
reported by Sacks, Schiller and Welch (1989).

Maximum Mean Squared Error (MMSE). Instead
of integrating the MSE of prediction, MMSE is a
minimax criterion which chooses the design to mini-
mize

max MSE[y (x)].
xEZ

Sacks and Schiller (1988) compared IMSE and MMSE
for discrete regions. For continuous regions, however,
this criterion is computationally complex. It involves
a d-dimensional optimization of a function with nu-
merous local optima at every iteration of a given
design-optimization algorithm.

Entropy. A criterion advanced by Lindley (1956) in
his work on Bayesian design is the minimization of
the expected posterior entropy. Shewry and Wynn
(1987, 1988) applied it to spatial sampling, and Currin,
Mitchell, Morris and Ylvisaker (1988) applied it to
the design of computer experiments. It quantifies the
“amount of information” in an experiment. In the
present setting, if the experimental region 2 is dis-
crete, the entropy criterion chooses the design S to
minimize E (—log g), where g is the conditional density
of Y(-) on § = 2 — S given Ys. Using a classical
decomposition of entropy, Shewry and Wynn (1987)
showed that minimizing the expected posterior en-
tropy on S is equivalent to maximizing the prior
entropy on S. When Y(-) is Gaussian, this is the same
as choosing S to maximize the determinant of Vg, the
covariance matrix for Y(-) on S. Straightforward al-
gebra also shows that, in the limiting Bayes case as
the prior variances of the 8’s tend to infinity, max-
imization of det Vg is equivalent to maximizing
det R - det(F’R™'F). If the 3’s are regarded as fixed
(as in Currin, Mitchell, Morris and Ylvisaker, 1988,
for the case of a constant prior mean), the last deter-
minant disappears and the entropy criterion reduces
to maximization of det R.

5.3. Algorithms

There is no way to implement the ideas set forth
above without a method of constructing designs. The
utility of D-optimal designs for standard analysis of
variance and regression problems with independent
experimental errors has only been realized by the
development of accessible algorithms (Fedorov, 1972;
Mitchell 1974; Welch, 1985; and Wynn, 1970).

Because standard designs can be inefficient or even
inappropriate for deterministic computer codes, the
need for computer software is even greater. Of course,
efficiency has to be weighed against computational
cost and convenience. Computer models like the flame
code in Section 2, which themselves are expensive to
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run on supercomputers, justify the cost of supercom-
puting in constructing good designs. It is these models
we have in mind here. Less effort would be warranted
to design for a code that runs on a workstation, say,
and so there is also a need for cheap, less sophisticated
algorithms.

We now describe some of the algorithms we have
used. They can be classified as single-stage methods,
sequential methods without adaption to the data, and
sequential methods with adaption.

Single-stage design fixes n in advance, and all n
design sites are simultaneously optimized according
to one (or perhaps a combination) of the above criteria.
In addition to standard optimization routines, such as
quasi-Newton, a number of exchange algorithms have
been tried, primarily when the experimental region is
a large, finite grid. At each iteration, an exchange
replaces a site in the design by a site that improves
the criterion. Currin, Mitchell, Morris and Ylvisaker
(1988) adapted Mitchell’s (1974) DETMAX excursion
algorithm for the entropy criterion. The exchange
algorithms used by Shewry and Wynn (1987) ex-
change sites by adding a random candidate site to the
design and deleting the worst site. When the design is
close to a (possibly local) optimum, the random can-
didates are restricted to neighborhoods of the current
sites. A simulated annealing algorithm was found use-
ful by Sacks and Schiller (1988) in problems with a
small, finite experimental region. For larger problems,
the time taken for the annealing process to converge
to the optimum was far too long. Simulated annealing
algorithms typically require many exchanges and are
therefore feasible only when exchanges are cheap.
Unfortunately, in our context each exchange may
require substantial linear algebra. For continuous re-
gions, we currently prefer standard optimization rou-
tines, at least for n X d < 100.

Sequentially designing one site at a time reduces
the computational burden from a single n X d-dimen-
sional optimization to a sequence of d-dimensional
optimizations. Unlike physical experiments, sequen-
tial schemes for computer experiments are no more
difficult to organize than a single stage. The design

.can also adapt to information gathered about the
regression model and R (w, x). Furthermore, there is
the option of allowing n to be determined as data
accumulate, stopping the algorithm as soon as there
is sufficient information. Fully sequential design is,
therefore, the most natural for computer experiments;
unfortunately, it is also the most difficult to treat
theoretically.

A sequential design algorithm devised for the IMSE
criterion, though ad hoc, avoids some pitfalls (see
Section 7) encountered in using simple one step look
ahead schemes. It starts by dividing the experimental
region into a number of subregions or boxes. Each

new point is added by computing the contribution
to the current IMSE from each box, finding the box
with the largest contribution, and adding a point in
that box that most reduces the contribution in that
box. The example of the next section exercises this
algorithm.

6. CIRCUIT-SIMULATOR EXAMPLE

To illustrate what is already possible, we take a
circuit-simulator code similar to that considered by
Welch, Yu, Kang and Sacks (1988) and mentioned in
Section 2, but differing in the circuit topology. Again,
the response is a clock asynchronization or “skew,”
and we consider six transistor widths as inputs. To
avoid getting sidetracked by issues specific to quality
control, we do not consider the noise factors here
(they are kept fixed at average levels), nor do we
perform any circuit-design optimization. We only con-
sider the problem of predicting the clock skew as a
function of the six input widths.

The experimental region of interest for the six
widths is rectangular, which we transform to the unit
cube [, ¥2]¢. We assume the model

(14) Y(x) =8 + Z(x),

where Z(-) has a correlation function given by (9).
This model is selected for various reasons. The regres-
sion component includes only the constant § partly
because our previous experience in other examples has
indicated that this simplification does not affect pre-
dictive performance. Moreover, engineering experi-
ence does not suggest strong trend over the region of
interest. The circuit-simulator clock skew is believed
to behave smoothly as a function of the transistor
widths; by putting p = 2 in (9), a smooth correlation
function for Z(-) is obtained. (This initial major as-
sumption of smoothness is revised later by estimating
p.) A similar model also gives good predictions when
applied to the data in Welch, Yu, Kang and Sacks
(1988).

Partly based on our experience with the earlier
problem, we allow a total of 32 runs of the simulator
for the experimental design. Choosing a single-stage
design would mean specifying 6,, ---, 6s and carry-
ing out a 192-variable (6 X 32) optimization of the
design-point coordinates. T'o reduce the computational
burden and to allow adjustment of the model in mid-
stream, we select a first-stage design of 16 points by
setting 0, = --- = 05 = 2 for efficiency-robustness in
the sense of Sacks, Schiller and Welch (1989) (de-
scribed further in Section 7). Optimizing the IMSE
over 6 X 16 = 96 coordinates using a quasi-Newton
library routine takes about 11 minutes on a Cray
X-MP. The design, given in the first 16 rows of
Table 1, is probably only locally optimal. The
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TABLE 1
Experimental design and clock skews for the
circuit-simulator example
Run Experimental design Skew
1 0.21 -0.26 0.23 —0.21 —0.17 —0.27 —0.972
2 -0.19 0.18 0.22 0.21 0.25 028 —0.620
3 —-0.19 —0.08 —0.28 —0.28 —0.25 —0.18 -0.711
4 0.19 —0.25 0.28 0.28 —0.06 0.19 —1.040
5 -0.28 0.25 —0.22 —-0.21 0.17 0.19 —0.532
6 -0.22 021 0.17 0.16 —0.22 —0.22 —0.799
7 -0.22 —0.12 0.27 -0.25 0.23 —0.11 —0.940
8 0.11 0.23 —-0.27 0.24 —0.13 0.22 —-0.416
9 -0.19 —0.19 —0.19 0.24 0.22 —0.17 —0.500
10 0.17 021 0.19 —0.24 —-0.20 0.19 -1.293
11 -0.26 —0.24 0.01 0.01 —0.24 0.26 —1.152
12 0.18 0.25 —0.21 —0.21 0.16 —0.28 —0.161
13 028 018 021 020 025 —0.18 —0.496
14 0.27 —0.18 —0.23 0.21 —0.26 —0.20 —0.612
15 —-0.01 0.00 0.00 0.00 0.00 0.01 —0.604
16 0.22 —0.22 —0.17 -0.16 0.21 0.22 -0.897
17 0.10 —0.30 —0.32 —0.38 0.33 —0.30 —0.342
18 001 031 035 045 —0.36 0.41 -1.199
19 —-0.32 045 —0.47 0.44 0.36 —0.28 —0.083
20 -0.27 037 0.33 —0.33 0.37 0.30 —1.048
21 —0.41 0.38 —0.32 —0.29 —0.47 0.37 —1.088
22 0.14 0.38 0.36 —0.40 —0.46 —0.49 —0.804
23 —0.15 —-0.30 —0.28 0.28 0.29 0.26 —0.444
24 —-0.24 —0.36 0.38 0.30 0.35 —0.37 —0.799
25 —0.46 —0.39 0.29 —0.37 —0.46 0.34 —1.918
26 0.17 0.36 —0.26 0.29 —0.41 —0.40 —0.535
27 023 —0.20 0.26 0.34 —0.45 —0.27 —1.242
28 0.31 —0.32 —0.25 —0.31 —0.19 0.29 -1.129
29 —0.01 —0.33 0.34 —0.43 047 0.37 -1.214
30 0.20 —0.37 —0.36 0.46 —0.45 0.39 —1.049
31 021 031 0.32 —0.20 045 —0.46 —-0.135
32 —-0.21 0.29 —0.27 0.20 040 041 —0.256

projection onto two of the six input coordinates in
Figure 1 shows that the design is well away from the
boundary, very likely a feature of the IMSE criterion
with the constant regression model.

With the data from running the simulator at these
16 points, the MLE of p is 2 (the upper constraint)
and those of 6;, - - -, 05 are .00, .39, .42, .53, 1.97 and
.46. These values are now used in the generation of
the second-stage design by the sequential strategy
outlined in Section 5. The experimental region is
broken into 32 boxes by dividing each of the last five
input ranges in half. The first variable is not used to
define these boxes as 8, = 0, suggesting that the
response is fairly constant (highly correlated) over
this factor, though it is still included in the second-
stage design. The second set of 16 points, generated
one at a time, is given in the second half of Table 1.
These points are less concentrated in the center of the
design region than the first-stage design, about which
we have some misgivings. The MLE of p recomputed
from all 32 observations is 1.54, indicating a less-
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F1G. 1. Projection of the experimental design onto the coordinates
of two input variables.

smooth surface than initially thought. The MLEs of
b1, ---, 0 are .00, .06, .19, .34, .14 and .32, again
suggesting that the first factor is irrelevant.

To investigate the effectiveness of the BLUP based
on this design, we can compare the true responses
from the simulator at 100 random points ry, - - -, ri0
in the experimental region with predictions from the
BLUP. (We chose a computationally cheap circuit-
simulator code to allow this evaluation.) One summary
statistic is the empirical integrated squared error

1
100
which equals (.122)? (relative to a data range of about

2). The maximum absolute discrepancy between the
true clock skew and the BLUP over these 100 points

Syr) —yr)P,

- is .458. For comparison, a quadratic response surface

with 28 unknown coefficients fitted by least squares
to the data from our design gives an empirical inte-
grated squared error of (.674)? and a maximum abso-
lute error of 1.71. This illustrates the potential danger
in extrapolating polynomial models, but part of the
poor performance may be due to our design, which is
not intended for this sort of analysis.

It is also interesting to see whether the MSE (8) of
the BLUP is a meaningful indicator of uncertainty in
prediction. From the MSEs at the 100 random points
(again based on the 32-point MLEs), one can compute
standardized residuals [y (r;) — 3 (r:)]//{MSE [y (r;)]}*/2
The @-Q plot in Figure 2 shows that these standard-
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F1G. 3. Predicted clock skew plotted against true clock skew at 100 random sites.

ized residuals are approximately standard normal,
suggesting a central-limit-theorem effect. Also, the
slope of the plot is fairly close to 1, indicating that the
MSEs do, indeed, provide a valid estimate of error in
this example. The plot of y(r;) against y(r;) in Fig-
ure 3 also shows that the poorest predictions tend to

be where there are large negative skews. Possibly,
the computer code is erratic at such extreme clock
skews and harder to predict.

For insight into the relative effects of the six inputs,
the response can be decomposed into an average, main
effects for each input, two-input interactions and
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higher-order interactions. Define the average of y(x)
over the experimental region by

6
uo=fy(x) IT dxx,
h=1

the main effect of input x; (averaged over the other
inputs) by

wi(x;) =fy(x) [T dxn — po,

h#i

the interaction effect of x; and x; by

wij (xi, %) = fy(x) IT dxn — pi(x) — pi(x) — po,
h#i,j

and so on for higher-order interactions. These effects
are estimated by replacing y(x) by 7 (x). In the current
example, visual inspection of the estimated effects up
to two-input interactions suggests that the average,
the main effects for factors 2-6, and the interaction
of x, and x¢ are the important effects. The predictor

[20 + ﬁz(xz) + .-+ ﬁG(xG) + ﬁ46(x49 x6)

gives an empirical squared error of (.128)2, supporting
this interpretation.

Using a different design criterion (entropy), algo-
rithm (adaptation of DETMAX), and correlation
function [(9) with p = 1 at the first stage and (11) at
the second stage], Currin, Mitchell, Morris and
Ylvisaker (1988) arrived at a design concentrated
on the boundary of the experimental region. When
used to predict at the same 100 random points, they
reported an empirical integrated squared error of
(.163)% and maximum absolute error of .369 over the
same 100 random points. Thus, the predictions from
this alternative approach are worse on average than
the design produced by the IMSE criterion, but the
maximum error is better.

7. DISCUSSION

We now summarize a numbe; of open statistical
* problems that we have discussed only briefly so far
and some alternative approaches.

7.1. Simulator Complexity

Almost all of the simulation codes we have worked
with are differential-equations solvers. Many of the
numerical and other difficulties we have encountered
with these codes have implications for the statistical
design and analysis.

o A single run of the code may be computationally
expensive, for example the 20-minute run time

for the flame code (see Section 2), obviously call-
ing for efficient design and analysis.

e The coarse solution to the TWOLAYER code (see
Section 2) is a step-like function that may not
mirror important features of the accurate solu-
tion. An accurate solution is expensive.

e The mathematical model itself may be a poor
approximation to reality. For example, the simple,
deterministic function used by Taguchi (1986,
Chapter 6) for parameter design of a Wheatstone
bridge generates negative electrical resistances
over part of the region of experimentation. Such
aberrant data are misleading and can degrade the
analysis. In complex settings, computer-model de-
ficiencies are not so easy to identify. In this article
we have largely ignored the problem of validating
codes against reality. Rather we have focused on
prediction of the computer code itself. Of course,
a predicted response that is surprising may help
to identify defects in the code.

e The inputs may be of high dimension. This inter-
acts with the first difficulty. If the data are expen-
sive, scientists and statisticians are fully aware of
the difficulty in obtaining adequate information
about many factors, and screening to reduce di-
mension is necessary. Thus, expensive data (few
runs) and low dimension go together. Cheap data,
however, allow many runs, so many factors can
be investigated and often are.

7.2. Estimation of Model Parameters

Because the correlation matrix of the data, R, is
n X n, the maximum-likelihood computations outlined
in Section 4 can be formidable. Vecchia (1988) ap-
proximated the likelihood by writing it as a product
of conditional densities and conditioning on only a
small number of nearest sites. The approximation
is cheaper to compute but may retain most of the
information.

Properties of the MLE are not well understood and
are under study. Mardia and Marshall’s (1984) asymp-
totic results on consistency are not applicable if the
region for x is bounded. Their Monte Carlo studies of
small-sample behavior indicated substantial variabil-
ity in the estimates. The validities of the BLUP and
measures of uncertainty calculated by substituting
MLE:s of the correlation parameters therefore appear
questionable, but our experience is that even crude
MLEs can lead to useful predictions and quantifica-
tion of uncertainty. Stein (1988) showed that under
special circumstances the BLUP can be not only
consistent but asymptotically efficient even when
the correlation function is misspecified, provided the
misspecification leads to a “compatible” Gaussian
measure.
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7.3. Design Algorithms

All algorithms we have tried for single-stage design
are impeded by a number of computational obstacles.

o The optimization is over n X d design-site coor-
dinates. Though symmetries in the optimal de-
signs are sometimes present, we have not found
ways to exploit them to reduce the dimension of
the optimization. Since there can be numerous
local optima, several tries are necessary.

¢ Evaluating a “trial” design at each iteration of an
optimization algorithm typically involves the so-
lution of a set of at least n linear equations, for
example (13) to compute the IMSE. (The vecto-
rizing architectures of computers like the Cray X-
MP we have used are ideal for this type of linear
algebra, however.)

e The correlation matrix R in (13) (and in other
criteria) can be poorly conditioned, and naive
rules for cheaply updating the solution from one
iteration to the next may lead to numerical errors.
For a given correlation function, the conditioning
of R becomes worse as n increases.

Thus, the design criteria of Section 5.2 require partic-
ularly careful numerical analysis. The computation of
D-optimal or other efficient designs for experiments
with independent errors shares some of these difficul-
ties, but to a far lesser degree.

As discussed in Section 5.3, sequential design is
computationally cheaper and allows adaption to the
data. Simple (myopic) sequential strategies of adding
the next point to minimize the value of the new design
criterion do not work well, however, at least for the
IMSE and MMSE criteria. There is a tendency for
design sites to eventually “pile up.” This may seem
counter-intuitive but consider the following example.
With the MMSE criterion, take d = 1 and & = [,
%]. Suppose model (1) has no regression component,
and let Z () have correlation function exp[—(w — x)?].
Let the first site, s;, be placed at zero. If the second
site, s, is to the left of zero, a straightforward calcu-
lation of MSE[y (x)] from (8) shows that the maxi-
mum MSE [y(x)] occurs at x = ¥, and the maximum
decreases as s, tends to zero. Exact replication does
not occur—the limiting design enables y(0) and y’(0)
to be evaluated—but this is inefficient relative to the
best two-site design. In several dimensions, we have
observed that the first few design sites do not pile up
in this way, but the same phenomenon eventually
occurs. This is not a problem for the entropy criterion,
because it places each new design site where the
current MSE[y(x)] is maximized, thereby avoiding
-the neighborhoods of existing design sites.

We described in Section 5.3 a modified sequential
algorithm for the IMSE criterion which overcomes

this problem by dividing the experimental region. To
test the efficiency and running time of this algorithm,
we constructed various designs with 9 = n = 25,
p=1.6or2in correlation (9), d =2, 3, or 4 dimensions,
and constant (8) or first order (8, + X, x;3;) regres-
sions. The sequential algorithm required only about
20-30% of the CPU time of a full optimization of all
n design sites. Further computational gains would be
possible by updating, rather than recomputing, the
IMSE as each new site is introduced. Clearly, any
sequential scheme without adaption to the data has to
be less efficient than an optimal one-stage scheme.
Nonetheless, some comparisons show that the effi-
ciency of the designs constructed by the sequential
algorithm just described ranges from 40-90%. The
lower efficiencies tend to arise when small IMSEs are
compared; that is, when n is large, d is small and the
regression has just the constant term. Adapting the
correlation structure to the data (e.g., by MLE) could
lead to sequential methods which outperform one-
stage algorithms, especially if the data indicate that
some inputs are more important than others.

7.4. Efficiency-Robustness of Designs

Assumptions have to be made about the model for
Y(-) and the design criterion. It is natural to ask a
number of questions about the efficiency of a design
if assumptions change.

e How sensitive are optimal designs to the choice of
correlation structure?

o What effect does the regression part of the model
have on design?

e How do designs chosen by one criterion perform
with respect to other criteria?

o Are there sub-optimal designs which are robust to
choice of criterion?

o How important is optimality in this setting?

® Are there cheap-to-construct alternatives that per-

- form reasonably well?

Answers to these questions are limited to a large
extent because of the difficulty in computing optimal
designs; at the moment we can only refer to some
fragmentary, anecdotal results.

Sacks, Schiller and Welch (1989) investigated the
effect of the correlation function on the efficiency of
the design and predictor. Their study was limited to
the effect of the correlation parameter § within the
family (9) with p = 2. They computed IMSE-optimal
designs for various values of 8. For a given “true” 6,
the efficiency of one of these designs, S, relative to
the optimal design S; was defined to be IMSE(S,)/
IMSE(S), and there will be some worst-case value of
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6, which minimizes this efficiency. The design that
maximizes the worst-case efficiency was deemed to be
robust to 6. A further complication is that when eval-
uating IMSE(S), the BLUP can be based on the true
6 or that assumed when generating the design. If the
data will be extensive enough to estimate the correla-
tion structure, the true § may be appropriate, other-
wise the assumed 6 is retained at the prediction stage.
Sacks, Schiller and Welch (1989) considered both
cases. Typically, designs for “moderately small” 0 re-
sulted. This approach requires computing a number
of optimal designs and is limited to problems with
n X d < 100, say. For larger problems these efficiency-
robust designs can be used, however, to start a se-
quential scheme.

Currin, Mitchell, Morris and Ylvisaker (1988) im-
plicitly considered robustness of efficiency of the en-
tropy criterion to the correlation structure, although
they made no study. In several examples, they de-
signed using (9) with p = 1 and 6 very large. The
intuition was that this prior represents hard-to-pre-
dict (low correlation) functions, whereas any reason-
able design would deal adequately with easier
functions. [There is a connection between designs
produced by the entropy criterion as correlations be-
come smaller and those from maximizing the mini-
mum distance between the design sites (Johnson,
Moore and Ylvisaker, 1988).] A measure of efficiency
based on differences in MSEs would lead to a choice
of a low-correlation prior, whereas the contrary find-
ings of Sacks, Schiller and Welch (1989) were based
on relative efficiency.

Sacks and Schiller (1988) investigated the effect of
qualitatively different correlation functions—(9) with
p = 2 versus (12)—on robustness of efficiency. They
used MMSE as the criterion, had no regression model
and designed on a grid. The 6’s of the two correlation
functions were chosen to match correlations between
Z’s at nearest neighbor grid points. This study showed
that designs optimal by the MMSE criterion for one
correlation were over 80% efficiency for the other (the
entries in their Table 3.1 need to be re-ordered).
In contrast, we have found that, in predicting two-
_dimensional integrals, good designs for correlation (9)
with p = 1 behave poorly in terms of relative efficiency
when p = 2.

Whether or not a design has robustness of efficiency
with respect to alternative correlation functions, the
properties of the BLUP will be seriously affected. In
particular, higher correlations dramatically increase
the apparent precision of prediction. Fortunately, us-
ing the data to estimate correlation parameters may

lead to effective prediction and reliable estimates of -

uncertainty (as in the example of Section 6).
The role of the regression model is not yet clear,
but it seems to be less important than in design for

traditional models with “white noise” errors. System-
atic departure from the regression model just becomes
part of Z(-), and the BLUP is always an interpolator.
In the circuit-simulator experiment, for example, our
regression model included only a constant term, yet
the predictor appears to follow the true surface, which
is clearly not constant, reasonably well. In Example 2
of Sacks, Schiller and Welch (1989) a special class of
designs was employed for a methane-combustion code,
and it was noted that the effect of the regression
model was negligible at the prediction stage. The
BLUP was able to adapt to the absence or presence of
regression terms: a smaller regression model is com-
pensated for by a covariance function with larger
estimated correlations. This phenomenon has some
theoretical justification in ongoing work with Y. B.
Lim and W. J. Studden on the asymptotic behavior of
designs and predictors as the correlation gets large in
(9) with p = 2.

Sacks and Schiller (1988) found that the entropy
and MMSE criteria produce very different designs.
The example of Section 6 indicates strong differences
between designs from the entropy and IMSE criteria.
The entropy criterion tends to push the design sites
away from one another, so for small n the optimal
design lies on the boundary of the experimental region.
As n increases, some interior sites appear—the higher
the dimension, the larger n has to be for this to occur.
Attraction to the boundary seems not to be a feature
of the IMSE and MMSE criteria. In fact, the first 16
runs in Table 1, chosen nonsequentially by IMSE, are
well in from the boundary. These remarks are con-
cerned only with the appearance of the designs; we
know of no comprehensive investigations of efficiency
robustness with respect to the entropy, IMSE, and
MMSE criteria. It may turn out that new criteria
are necessary, possibly incorporating robustness
explicitly.

7.5. Some Alternative Approaches

There are some close connections between the ex-
perimental designs produced by the IMSE criterion
and previous approaches aimed at minimizing the
impact of systematic error in physical experiments.
The primary design criterion of Box and Draper (1959,
1963) is also an integrated mean squared error, in-
cluding components from squared bias and error var-
iance. The variance component turned out to be
unimportant for design in the sense that “all-bias”
designs that minimize the bias component do fairly
well even when the variance component is substantial.
Despite modeling the systematic departures by higher-
order polynomials rather than a stochastic process,
these all-bias designs are qualitatively similar to those
from our use of the IMSE criterion, with design points
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away from the boundaries of the region of interest. It
is plausible that they may be competitive for computer
experiments, but the numerical burdens are again
extensive. -

We have some doubts about transferring least-
squares fitting of response surfaces to computer ex-
periments, however. Comparisons can be made by
computing the root average squared error or maximum
absolute error from test data. In the circuit-simulator
example of Section 6, the least-squares quadratic fit
is only about 18% and 27% efficient by these criteria
relative to the fit from model (14). In this comparison
the design constructed for the IMSE criterion was
used for both fits. Sacks, Schiller and Welch (1989)
reported an example where the least-squares fit to
data from a standard factorial design with design
points at the boundary of the region of interest had
similarly low efficiency.

Our methods are interpolation schemes and could
be compared to methods in the numerical analysis
literature. The correlation functions (10) and (11) lead
to linear and cubic splines. In one dimension, the
correlation (9) with p = 2 is related to Lagrangian
interpolation when 6 is small. There is little informa-
tion in the literature about the construction of good
designs for higher-dimensional interpolation.

In the presence of systematic rather than random
error, a good experimental design tends to fill out the
design space rather than being concentrated on the
boundary. Low-discrepancy sequences such as Halton
(1960) sequences for numerical integration of non-
smooth functions have this “space filling” property
(as do Latin hypercube designs). Also, the use made
of discrepancy criteria and error bounds based on
maximum or average bias are closer in spirit to the
approach of this paper than to the randomization
bounds of classical Monte Carlo (see Niederreiter,
1978). The efficiencies of these easy-to-generate de-
signs for the objective of prediction should be inves-
tigated, especially for very large experimental designs,
where criterion optimization may be infeasible.

7.6. Kriging and Spatial Design

In the kriging and spatial statistics literature, the
random process Z(-) is often modeled using the var-
iogram E[Z(w) — Z(x)]? rather than the covariance
function. Analogous computational formulas for the
BLUP, etc. follow. The variogram permits a wider
class of processes, but we are not certain that the
added flexibility is needed in our applications. Esti-
mation of the variogram has been studied by several
authors; see Cressie (1988) for a recent review.

The data to which spatial methods are applied usu-
ally have a two- or three-dimensional x space. They
sometimes appear to have measurement error or may
be more erratic than responses from computer codes.

Geostatistical models used often incorporate a so-
called “nugget effect” for erratic local behavior. While
we have not addressed such models, it is worth
noting that correlation functions of the form (9) with
0 < p = 1 may be useful for modeling such erratic
data.

It is not obvious that methods of estimating the
variogram extend well from low-dimensional spatial
coordinates to the typically high-dimensional inputs
of computer experiments. Similarly, results like those
in Yfantis, Flatman and Behar (1987) on the proper-
ties of regular-grid designs, while interesting for two-
dimensional x, are not apparently relevant for com-
puter experiments.

Though we have stressed that deterministic obser-
vations are the unique feature of computer experi-
ments, the methodology can be extended to settings
where systematic and random error are both impor-
tant. The covariance function can be adapted so that
Var[Y(x)] = o2 + ¢Z%, where o2 is the variance of the
measurement error. (In kriging applications, this can
be difficult to distinguish from the nugget effect.)
Thus, these approaches should also be useful for phys-
ical experiments.

8. CONCLUSIONS

Many scientists feel that statistics is irrelevant to
their problems, even for physical experimentation.
Their experiments, they claim, have little random
variation but are plagued by possibly large systematic
biases. These criticisms are not unfounded. There is
little easily implemented methodology that addresses
systematic error, and the reality might appear even
starker for computer experiments with no measure-
ment error. Predictions are nonetheless made with
uncertainty, a statistical problem. The stochastic
models we have applied to computer experiments
quantify uncertainty about the response where it is
unobserved and provide a framework for efficient de-
sign and analysis, which has been useful in a number
of applications.
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Comment

Max D. Morris

The authors have provided an interesting and read-
able account of a statistical approach to the problem
of approximating an unknown, deterministic com-
puter model. The approximation of unknown func-
tions, of at least a few arguments, has received
considerable attention in other specialty areas of
mathematics, but is relatively new to statistics. A
statistical approach brings a unique potential for deal-
ing with uncertainty in the problem. In particular, it
can lead to measures of quality for each prediction,
and a structure on which to base the design of efficient
experiments. Techniques which are relevant for ap-
proximating computer models are particularly timely,
because the scientific and technical professions are
quickly becoming reliant upon these as research tools,
and this manuscript reports some of the first serious
efforts to make statistics relevant to these activities.

THE CLASSICAL APPROACH

At the end of Section 3, the authors give their basic
argument for treating this problem statistically:
“Modeling a computer code as if it were a realization
of a stochastic process . .. gives a basis for the quan-
tification of uncertainty . . .” Following this, Section 4
outlines their strategy which seems clearly classical
(as opposed to Bayesian) in form; it is what a classical
statistician would do if the computer model actually
had been generated as a realization of the stochastic
process. While this strategy does provide a mathe-
matical structure for dealing with uncertainty, classi-
cal statisticians who like to motivate their analyses
with fictional accounts of random sampling and hy-
pothetical replays of an experiment may find this an
uncomfortable setting. After all, unless one random-
izes the experimental design, there will not be a cred-
ible frequentist probability structure in this problem.

Max D. Morris is a Research Staff Member, Mathe-
matical Sciences Section, Oak Ridge National Labora-
tory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8083.
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593-607. North-Holland, Amsterdam.

YLVISAKER, D. (1987). Prediction and design. Ann. Statist. 15
1-19.

YOUNG, A. S. (1977). A Bayesian approach to prediction using
polynomials. Biometrika 64 309-317.

(My own usual preference for classical procedures is
heavily dependent on credible frequentist models. In
this problem, the Bayesian approach seems somewhat
more direct to me.)

A classical statistician, in order to proceed, will need
to be more pragmatic, by saying that a credible fre-
quentist model is unnecessary so long as the method
works. The first test of whether the method works is
whether it produces good approximations to computer
models. These authors, and others they have refer-
enced, have assembled a body of evidence that indi-
cates that this and similar methods have the potential
to produce good approximations. The second test,
which should be of particular concern to statisticians,
is whether it produces good (useful, dependable, mean-
ingful?) measures of uncertainty. Passing this second
test will be important if we are to take seriously any
claims of quantified prediction uncertainty or design
optimality. It is encouraging that the mean square
errors of prediction calculated in the example of
Section 6 seem to behave as we would hope.

CHOICE OF CORRELATION FUNCTION

As the authors point out in Section 4, the hopes of
the pragmatic classical statistician will be pinned on
the supposition that the computational model “though

_deterministic, may resemble a sample path of a (suit-

ably chosen) stochastic process ...” So, choosing a
suitable stochastic process, presumably one for which
y would be a “typical” realization, becomes an issue.
This is particularly true for preliminary design pur-
poses (before data are taken from which a correlation
structure can be estimated). Some guidelines for this
selection process are well-known; the authors note
that p = 2 processes produce smoother realizations
than p = 1 processes. Also, a tentative value of § must
be chosen for preliminary design purposes; the authors
use § = 2 in the example of Section 6.

When selecting a process in several dimensions,
some attention should probably be paid to the degree
of interaction among inputs for typical realizations.



