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    What is computer experiment? 

    Computer experiments with branching  and 
nested factors. 

    New class of designs. 
    Optimality criteria. 
    New metamodel. 

Overview 
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Introduction to Computer Experiments 

     Properties: 
  Deterministic output. 
  Time consuming. 
  Number of input variables can be large.   
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Motivating Example: Hard Turning 

•  Objective: minimize cutting force 
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Branching and Nested Factors 
•  Nested factor: A factor that can 

change with respect to the level of 
another factor. 

•  Branching factor: A factor within 
which other factors are nested. 

Branching 
factor 

z1 Tool 
(chamfer 
& hone) 

Nested 
factors 

v1|z1=chamfer 
v2|z1=chamfer 
v1|z1=hone 
v2|z1=hone 

Angle 
Length 
None 
None 

Hard turning experiment 
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Computer Experiments in Machining 
Type of Factor Notation Factor Ranges 
Branching factors z1 

Tool  
(Cutting edge shape) 

chamfer & hone 

Nested factors v1|z1=chamfer 
v2|z1=chamfer 
v1|z1=hone 
v2|z1=hone 

Angle 
Length 
None 
None 

17~ 20 
115~140 

None 
None 

Shared factors x1 

x2 

x3 

x4 
x5 

x6 

Cutting edge radius 
Rake angle 
Tool nose radius  
Cutting speed 
Feed 
Depth of cut 

5~25 
-15 ~ -5 
0.4 ~ 1.6 

120 ~ 240 
0.05 ~ 0.15 
0.1 ~ 0.25 
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•  Properties 

Design with Branching and Nested Factors 

 Branching factors are 
qualitative, which cannot be 
divided into intervals. 
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Any main effect correlated with this 
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Computer Experiments with Branching and 
Nested Factors 

•  Branching and nested factors (Phadke, 1989; 
Taguchi, 1987). 

•  Challenges in design:  

•  Challenges in modeling:  

•  First work on design and analysis of computer 
experiments with branching and nested factors. 

  Involve both quantitative and qualitative factors. 
  Some two-factor interactions are important.  

  No correlation function defined for nested factors. 
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Design of Computer Experiments with Branching 
and Nested Factors 

•  Latin hypercube design (LHD). 

•  LHD cannot be applied directly. 

  McKay, Beckman, Conover (1979).  
  Easy to construct. 
  One-dimensional balance.  

X1 X2 X1 

X2 X3 X3 

run X1 X2 X3 

1 1 2 3 

2 2 4 5 

3 3 5 1 

4 4 1 2 

5 5 3 4 
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A Naïve Design  
run z1 v1  ……  vm     x1  ……  xt 

1 
. 
. 
. 
1 
2 
. 
. 
. 
2 

Nested factors Shared factors Branching 
factors 
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Branching Latin Hypercube Design (BLHD) 
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Branching Latin Hypercube Design (BLHD) 

run z1 v1...vm1 z2 v1… vm2 x1……xt 
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How to Find a “Good” Design? 

•  For n runs and k factors, we can obtain (n!)k LHDs. 

Which one is better? 

12 



Minimize Correlation 
•  Iman and Conover (1982), Owen (1994), and Tang (1998) 

proposed to find designs minimizing correlations among 
factors. 

•  Owen (1994) 

•  Figure (c) shows the optimal LHD found by Tang (1998).   
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Maximize Minimum Distance 
•  Johnson, Moore, and Ylvisaker (1990) proposed the maximim 

distance criterion, which maximizes the minimum inter-site 
distance. 

•  Morris and Mitchell (1995) proposed to find the best LHD by 
maximizing the minimum distance between the points. 

•  Use a scalar-valued function to rank competing designs. 

  di is the (rectangular or Euclidean) distance between two design 
points. 
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Motivating Example 
•  Maximin rank vs. correlation in n=6, k=2 case. 

•  These two criteria can give conflicting results. 
•  Minimization of one criterion may not lead to  

minimization  of the other. 
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•  Maximin rank vs. correlation in n=6, k=2 case. 

•  These two criteria can give conflicting results. 
•  Minimization of one criterion may not lead to  

minimization  of the other. 

Motivating Example 

Maximin rank=11 

Correlation 0.714 
Maximin rank=80 

Correlation 0.086 

Maximin Rank 
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Reference: V. Roshan Joseph and Ying Hung (2008). Orthogonal-Maximin Latin  Hypercube  
Designs, Statistica Sinica, 18, 171-186. 

•  A design that minimizes        is called an orthogonal-maximin Latin 

   hypercube design (OMLHD). 

Orthogonal-Maximin Latin Hypercube Design 

Proposition 1: 
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•  Orthogonal-Maximin BLHD 

•  : z1=2 

Orthogonal-Maximin BLHD 
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•  Orthogonal-Maximin BLHD 

•  Proposition 2: 

Orthogonal-Maximin BLHD 
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•  Orthogonal-Maximin BLHD 

•  Proposition 2: 

•  A multi-objective criterion is to minimize 

•  Heuristic algorithm: simulated annealing algorithm(SAA) 

Orthogonal-Maximin BLHD 
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Orthogonal-Maximin BLHD Example 
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•  Kriging is first developed 40 years ago by G. Matheron 
and named in honor of D. Krige. 

•  Kriging is widely used in the analysis of computer 
experiments (Sacks et al. 1989; Santner et al. 2003) and in 
spatial statistics. 

•  Interpolating metamodel. 
 Interpolation property essential for deterministic  

computer experiments.     
•  Efficient in higher dimensions. 

Model Fitting in Computer Experiments 
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New Kriging Model with  
Branching and Nested Factors 

•   Kriging: 

18 
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New Kriging Model with  
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•   Kriging: 
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New Kriging Model with  
Branching and Nested Factors 

•   Kriging: 

•   Isotropic correlation for the branching factors: 
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New correlation function for the nested factors 

. •  Why not 

19 

•  Define new correlation function for nested factors: 



Computer Experiments in Machining 
Type of Factor Notation Factor Ranges 
Branching factors z1 

Tool  
(Cutting edge shape) 

chamfer & hone 

Nested factors v1|z1=chamfer 
v2|z1=chamfer 
v1|z1=hone 
v2|z1=hone 

Angle 
Length 
None 
None 

17~ 20 
115~140 

None 
None 

Shared factors x1 

x2 

x3 

x4 
x5 

x6 

Cutting edge radius 
Rake angle 
Tool nose radius  
Cutting speed 
Feed 
Depth of cut 

5~25 
-15 ~ -5 
0.4 ~ 1.6 

120 ~ 240 
0.05 ~ 0.15 
0.1 ~ 0.25 
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Finite Element Based Simulation in Machining 

•  Hard turning experiments are simulated 
from AdvantEdge 

•  Time consuming: 12 hrs ~1 day per run 
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Finite Element Based Simulation in Machining 
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Computer Experiments in Machining 
•  Fitted kriging model: 

•  Optimal setting:  
Factors setting 
Cutting edge shape 
Cutting edge radius 
Rake angle 
Tool nose radius  
Cutting speed 
Feed 
Depth of cut 

Chamfer angle: 18.74, length 128.13 
5 

-13.8 
1.41 
222 

0.067 
0.123 
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Computer Experiments in Machining 

•  Predicted minimum cutting force: 81 N (Lower than 191N, the observed average ) 

•  Confirmation experiments: 79 N           Confirms the validity of the optimal setting. 
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Sensitivity Analysis 
Main effects  plot Interaction:  

cutting edge radius & depth of cut 

For small CER, increase of DOC produces 
increase of material deformation through shear 

25 

Feed, depth of cut 
have significant effects 



Concluding Remarks 

•  The first work in computer experiments with branching and 
nested factors. 

•  A new class of design, branching Latin hypercube design 
(BLHD), is proposed and optimal criteria are discussed.   

•  New metamodel: blind kriging and new correlation function. 
•  New method provides an efficient way to find optimal settings 

of branching factors, nested factors and shared factors 
simultaneously.  
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Thank  you ! 


